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1. Pre-requisites

1.1 Bootcamp: Set

Set is a collection of objects. Members of set are called elements.

Notation:

For sets, 𝐴, 𝐵, 𝐶, .....

For elements, 𝑎, 𝑏, 𝑐, ....

For membership, ∈ e.g. 𝑎 ∈ 𝐴

For non membership, ∉.

For universal set, 𝕌 i.e. everything.

For null set, 𝜙.

Example:

𝐵 = {𝑥/0 ≤ 𝑥 ≤ 1} where / means such that.

𝐶 = {𝑥/𝑥 ∈ R, 𝑥2 = −1} = 𝜙

Definition: If every element of 𝐴 is an element of 𝐵 then 𝐴 is subset of 𝐵. i.e. 𝐴 ⊂ 𝐵.

Definition: 𝐴 = 𝐵 iff (if and only if) 𝐴 ⊂ 𝐵 and 𝐵 ⊂ 𝐴.

Properties:

• 𝜙 ⊂ 𝐴 ; 𝐴 ⊂ 𝑈 ; 𝐴 ⊂ 𝐴

• 𝐴 ⊂ 𝐵, 𝐵 ⊂ 𝐶 ⟹ 𝐴 ⊂ 𝐶

Remark: The order in which the elements of set are listed is immaterial. E.g. {𝑎, 𝑏, 𝑐} = {𝑏, 𝑐, 𝑎}.

Definition: The complement of 𝐴 with respect to 𝑈 is 𝐴c = {𝑥 ∣ 𝑥 ∈ 𝑈 and 𝑥 ∉ 𝐴}.

Definition: The intersection of 𝐴 and 𝐵 is 𝐴 ∩ 𝐵 = {𝑥 ∣ 𝑥 ∈ 𝐵 and 𝑥 ∈ 𝐵}.

Definition: The union of 𝐴 and 𝐵 is 𝐴𝑈𝐵 = {𝑥 ∣ 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵}.

If 𝐴 ∩ 𝐵 = 𝜙, then 𝐴 and 𝐵 are disjoint or mutually exclusive.

Definition:

• Minus: 𝐴 − 𝐵 = 𝐴 ∩ 𝐵c

• Symmetric difference or XOR: 𝐴△𝐵 = (𝐴 − 𝐵) ∪ (𝐵 − 𝐴) = (𝐴 ∪ 𝐵) − (𝐴 ∩ 𝐵)
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• The cardinality of 𝐴, denoted by |𝐴| is the number of elements in 𝐴. 𝐴 is finite if |𝐴| < ∞.

𝐵 = {1, 2, 3, ....} is countably infinite i.e. |𝐵| = ℵ0

𝐶 = {𝑥|𝑥 ∈ [0, 1]} is uncountably infinite i.e. |𝐶| = ℵ1

Laws of Operation:

• Complement Law: 𝐴 ∪ 𝐴c = 𝑈 , 𝐴 ∩ 𝐴c = 𝜙, (𝐴c)c = 𝐴

• Commutative Law: 𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴 , 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴

• Associative Law: 𝐴 ∪ (𝐵 ∪ 𝐶) = (𝐴 ∪ 𝐵) ∪ 𝐶, 𝐴 ∩ (𝐵 ∩ 𝐶) = (𝐴 ∩ 𝐵) ∩ 𝐶

• Distributive Law: 𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶), 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)

• De-Morgan’s Law: (𝐴 ∪ 𝐵)c = 𝐴c ∩ 𝐵c, (𝐴 ∩ 𝐵)c = 𝐴c ∪ 𝐵c
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1.2 Bootcamp: Derivative

Definition: The function 𝑓(𝑥) maps values of 𝑋 from a certain domain 𝑋 to a certain range 𝑌
which can be denoted 𝑓 ∶ 𝑥 −→ 𝑌 .

If 𝑓(𝑥) = 𝑥2 then the function takes x-values from the real line ℝ to the non-negative portion of
real line ℝ+.

Definition: We say that 𝑓(𝑥) is continuous function if for any 𝑥0 & 𝑥 ∈ 𝑋, we have 𝑙𝑖𝑚𝑥→0𝑓(𝑥) =
𝑓(𝑥0) where 𝑓(𝑥) is assumed to exist for all 𝑥 ∈ 𝑋.

The function 𝑓(𝑥) = 3𝑥2 is continuous for all 𝑥. The function 𝑓(𝑥) = ⌊𝑥⌋ i.e. round down to nearest
integer e.g. ⌊3.4⌋ = 3. This function has discontinuity at any integer 𝑥.

Definition: The inverse of function 𝑓 ∶ 𝑋 −→ 𝑌 is reverse mapping of 𝑔 ∶−→ 𝑋 such that 𝑓(𝑥) =
𝑦 iff 𝑔(𝑦) = 𝑥 for all appropriate 𝑥 and 𝑦. The inverse is often written as 𝑓−1 and is especially
useful if 𝑓(𝑥) strictly increasing or decreasing function. Note that 𝑓−1(𝑓(𝑥)) = 𝑥.

Defintion: If 𝑓(𝑥) is continuous, then it is differentiable if,

𝑑
𝑑𝑥𝑓(𝑥) = 𝑓 ′(𝑥) = lim

ℎ→0
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ

exists and is well defined for given 𝑥. The derivative of 𝑓(𝑥) is slope of the function.

[𝑥𝑘]′ = 𝑘𝑥𝑘−1

[𝑒𝑥]′ = 𝑒𝑥

[𝑠𝑖𝑛(𝑥)]′ = 𝑐𝑜𝑠(𝑥)

[𝑐𝑜𝑠(𝑥)]′ = −𝑠𝑖𝑛(𝑥)

[𝑙𝑛(𝑥)]′ = 1
𝑥

[𝑎𝑟𝑐𝑡𝑎𝑛(𝑥)]′ = 1
1 + 𝑥2

Theorem: Some properties of derivatives

6



[𝑎𝑓(𝑥) + 𝑏]′ = 𝑎𝑓 ′(𝑥)

[𝑓(𝑥) + 𝑔(𝑥)]′ = 𝑓 ′(𝑥) + 𝑔′(𝑥)

[𝑓(𝑥) + 𝑔(𝑥)]′ = 𝑓 ′(𝑥)𝑔(𝑥) + 𝑓(𝑥)𝑔′(𝑥)

[𝑓(𝑥)
𝑔(𝑥) ]′ = 𝑔(𝑥)𝑓 ′(𝑥) − 𝑓(𝑥)𝑔′(𝑥)

𝑔2(𝑥)

[𝑓(𝑔(𝑥))]′ = 𝑓 ′(𝑔(𝑥))𝑔′(𝑥)

Remark: The second derivative 𝑓″(𝑥) = 𝑑
𝑑𝑥𝑓 ′(𝑥) and is the “slope of slope”. If 𝑓(𝑥) is position,

then 𝑓 ′(𝑥) can be regarded as “velocity” and 𝑓″(𝑥) as “acceleration”.

The minimum or maximum of 𝑓(𝑥) can only occur when slope of 𝑓(𝑥) is 0, i.e. only when 𝑓 ′(𝑥) = 0,
say at the critical point 𝑥 = 𝑥0. Exception: Check the endpoints of your intervals of interest as
well.

If 𝑓″(𝑥) < 0, you get maximum, if 𝑓″(𝑥) > 0, you get a minimum. If 𝑓″(𝑥) = 0, you get a point
of inflection.
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1.3 Bootcamp: Integration

Definition: The function 𝐹(𝑥) having derivative 𝑓(𝑥) is called the anti-derivative or indefinite
integral. It is denoted by 𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥.

Fundamental Theorem of Calculus: If 𝑓(𝑥) is continuous, then the area under the curve for 𝑥 ∈ [𝑎, 𝑏]
is denoted and given by the definite integral.

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥)|𝑏𝑎 = 𝐹(𝑏) − 𝐹(𝑎)

∫ 𝑥𝑘𝑑𝑥 = 𝑥𝑘+1

𝑘 + 1 + 𝑐 for 𝑘 ≠ 1 where c is arbitrary constant

∫ 𝑑𝑥
𝑥 = 𝑙𝑛|𝑥| + 𝑐

∫ 𝑒𝑥𝑑𝑥 = 𝑒𝑥 + 𝑐

∫ 𝑐𝑜𝑠(𝑥)𝑑𝑥 = 𝑠𝑖𝑛(𝑥) + 𝑐

∫ 1
1 + 𝑥2 𝑑𝑥 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑥) + 𝑐

Theorem: Some well known properties of definite integrals

∫
𝑎

𝑎
𝑓(𝑥)𝑑𝑥 = 0

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 = − ∫

𝑎

𝑏
𝑓(𝑥)𝑑𝑥

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 = ∫

𝑐

𝑎
𝑓(𝑥)𝑑𝑥 + ∫

𝑏

𝑐
𝑓(𝑥)𝑑𝑥

Theorem: Some other properties of general integrals:

∫[𝑓(𝑥) + 𝑔(𝑥)]𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥
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∫ 𝑓(𝑥)𝑔′(𝑥)𝑑𝑥 = 𝑓(𝑥)𝑔(𝑥) − ∫ 𝑔(𝑥)𝑓 ′(𝑥)𝑑𝑥 integration by parts

∫ 𝑓(𝑔(𝑥))𝑔′(𝑥)𝑑𝑥 = ∫ 𝑓(𝑢)𝑑𝑢 Substitution rule with u = g(x)

Defiinition: Derivative of arbitrary order K can be written as 𝑓𝑘(𝑥) or 𝑑𝑘
𝑑𝑥𝑘 𝑓(𝑥). By convention

𝑓0(𝑥) = 𝑓(𝑥).

The Taylor Series Expansion of 𝑓(𝑥) about a point 𝑎 is given by

𝑓(𝑥) =
∞

∑
𝑘=0

𝑓𝑘(𝑎)(𝑥 − 𝑎)𝑘

𝑘!

The Maclaurin Series is simply Taylor expanded around 𝑎 = 0.

Some famous Maclaurin Series;

𝑠𝑖𝑛(𝑥) =
∞

∑
𝑘=0

(−1)𝑘𝑥2𝑘+1

(2𝑘 + 1)!

𝑐𝑜𝑠(𝑥) =
∞

∑
𝑘=0

(−1)𝑥𝑥2𝑘

(2𝑘)!

𝑒𝑥 =
∞

∑
𝑘=0

𝑥𝑘

𝑘!

Here are some miscellaneous sums:

𝑛
∑
𝑘=1

𝑘 = 𝑛(𝑛 + 1)
2

𝑛
∑
𝑘=1

𝑘2 = 𝑛(𝑛 + 1)(2𝑛 + 1
6

∞
∑
𝑘=0

= 1
1 − 𝑝 ( for − 1 < 𝑝 < 1)

Theorem: Occasionally, we run into trouble when taking indeterminate ratios of form 0
0 or ∞

∞ . In
such cases, L’ Hospital Rule is useful. If the limits lim𝑥→𝑎 𝑓(𝑥) and lim𝑥→𝑎 𝑔(𝑥) both go to 0 or
both go to ∞, then,
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lim
𝑥→𝑎

𝑓(𝑥)
𝑔(𝑥) = lim

𝑥→𝑎
𝑓 ′(𝑥)
𝑔′(𝑥)

Example:

lim
𝑥→0

𝑠𝑖𝑛(𝑥)
𝑥 = lim

𝑥→0
𝑐𝑜𝑠(𝑥)

1 = 1

Double Integration:

Whereas single integrals get us the area under a curve, double integrals represent the volume under
a three dimensional function.

The volume under 𝑓(𝑥, 𝑦) = 8𝑥𝑦 over region 0 < 𝑥 < 𝑦 < 1 is given by

∫
1

0
∫

𝑦

0
𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = ∫

1

0
∫

𝑦

0
8𝑥𝑦𝑑𝑥𝑑𝑦 = ∫

1

0
4𝑦3𝑑𝑦 = 1

We can swap the order of integration to get same answer.

∫
1

0
∫

1

𝑥
8𝑥𝑦𝑑𝑦𝑑𝑥 = ∫

1

0
4𝑥(1 = 𝑥2)𝑑𝑥 = 1
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2. Introduction to Probability

2.1 Introduction

Mathematical models are either

• Deterministic (no uncertainty/randomness)

• Probabilistic (have some uncertainty)

Q. A couple has two kids and at least one is boy. What is the probability that both are boys?

Possibilities: GG, BG, GB, BB. Eliminate GG since we know that there’s at least one boy. Then
𝑃(𝐵𝐵) = 1

3 .

Probability is methodology that describes the random variation in systems. Statistics uses data
(sample) to draw conclusion about population.

Definition: A sample space associated with an experiment E is the set of all possible outcome of
E. It’s usually denoted by 𝑆 or Ω.

Coin Toss: 𝑆 = {𝐻, 𝑇 }

Toss a coin 2 times: 𝑆 ∶ {𝐻𝐻, 𝐻𝑇 , 𝑇 𝐻, 𝑇 𝑇 }

Definition: An event is a set of possible outcomes. Thus, any subset of 𝑆 is event.

Toss a dice, 𝑆 = {1, 2, ...}

If 𝐴 is event “odd number occurs”, 𝐴 = {1, 3, 54}

The empty set 𝜙 is an event of 𝑆.

𝑆 is an event of 𝑆.

If 𝐴 is an event, then 𝐴𝑐 is the complementary event.

If 𝐴 and 𝐵 are events, then 𝐴 ∪ 𝐵 and 𝐴 ∩ 𝐵 are events.

Definition: The Probability of a generic event 𝐴 ⊂ 𝑆 is a function that adheres to following
axioms:

• 0 ≤ 𝑃(𝐴) ≤ 1 (probabilities are always between 0 and 1)

• 𝑃(𝑆) = 1 (probability of some outcome is 1)

• If 𝐴 and 𝐵 are disjoint events, i.e. 𝐴 ∩ 𝐵 = 𝜙 then, 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵).

• Suppose 𝐴1, 𝐴2, .... is a sequence of disjoint events, i.e. 𝐴𝑖 ∩ 𝐴𝐽 = 𝜙 for 𝑖 ≠ 𝑗.
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𝑃(𝑆) = 𝑃(𝑈∞
𝑖=1𝐴𝑖)

= Σ∞
𝑖=1𝑃(𝐴𝑖)

= Σ∞
𝑖=1

1
2𝑖

Theorem: 𝑃(𝐴𝑐) = 1 − 𝑃 (𝐴)

Proof:

1 = 𝑃(𝑆)
= 𝑃(𝐴 ∪ 𝐴𝑐)
= 𝑃(𝐴) + 𝑃(𝐴𝑐) ∴𝐴 ∩ 𝐴𝑐 = 𝜙

Corollary: 𝑃(𝜙) = 0

Proof: By definition, 𝜙 = 𝑆𝑐; so the result follows the theorem and axiom 2. Remark: The
converse is false: 𝑃(𝐴) = 0 doesn’t imply 𝐴 = 𝜙.

Theorem: For any two events 𝐴 and 𝐵,

𝑃(𝐴 ∪ 𝐵) = 𝑃 (𝐴) + 𝑃 (𝐵) − 𝑃(𝐴 ∩ 𝐵)

Proof: Use Venn-diagram.

Remark: Axiom 3 is special case of this theorem with 𝐴 ∩ 𝐵 = 𝜙.

Theorem: For any three events 𝐴, 𝐵 and 𝐶,

𝑃(𝐴 ∪ 𝐵 ∪ 𝐶) = 𝑃 (𝐴) + 𝑃(𝐵) + 𝑃(𝐶) − 𝑃(𝐴 ∩ 𝐵) − 𝑃(𝐴 ∩ 𝐶) − 𝑃(𝐵 ∩ 𝐶) + 𝑃(𝐴 ∩ 𝐵 ∩ 𝐶)

Theorem: Here is the Principle of inclusion-exclusion:

𝑃(𝐴1 ∪ 𝐴2 ∪ .... ∪ 𝐴𝑛) = Σ𝑛
𝑖=1𝑃(𝐴𝑖) − ΣΣ𝑖<𝑗𝑃(𝐴𝑖 ∩ 𝐴𝑗) + ΣΣΣ𝑖<𝑗<𝑘𝑃(𝐴𝑖 ∩ 𝐴𝑗 ∩ 𝐴𝑘)
+ ..... + (−1)𝑛−1𝑃(𝐴1 ∩ 𝐴2 ∩ ....𝐴𝑛)

Remark: You “include” all of the “single” events, “exclude” the double events, include the triple
events etc.

Finite Sample Space:

Suppose S is finite 𝑆 = 𝑆1, 𝑆2, ....𝑆𝑛. Finite sample space often allows us to calculate the prob-
abilities of certain events more efficiently. To illustrate, let 𝐴 ⊂ 𝑆 be any event, then 𝑃(𝐴) =
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Σ𝑆𝑖∈𝐴𝑃(𝑆𝑖).

You have 2 red cards, a blue and a yellow card. Pick a card at random then,

𝑆 = {𝑆1, 𝑆2, 𝑆3} = {𝑟𝑒𝑑, 𝑏𝑙𝑢𝑒, 𝑦𝑒𝑙𝑙𝑜𝑤}

𝑃(𝑆1) = 1
2 𝑃(𝑆2) = 1

4 𝑃(𝑆3) = 1
4

𝑃(red or yellow) = 1
2 + 1

4

Definition: A simple sample space (SSS) is a finite sample space in which outcomes are equally
likely.

Remark: In above example, 𝑆 is not simple sample space since 𝑃(𝑆1) ≠ 𝑃(𝑆2).

Example: Toss 2 fair coins,

𝑆 = {𝐻𝐻, 𝐻𝑇 , 𝑇 𝐻, 𝑇 𝑇 } is a 𝑆𝑆𝑆 (all probabilities are 1
4).

Theorem: For any event A in 𝑆𝑆𝑆,

𝑃(𝐴) = |𝐴|
|𝑆| = no. of elements in A

no. of elements in S

2.1.1 Counting Techniques

Muffin (blueberry or oatmeal) or a bagel (sesame, plain, salt, garlic) but not both. You have
2 + 4 = 6 choices in total.

𝑛𝐴𝐵 = 3 ways to go from city A to B (walk, car, bus) and 𝑛𝐵𝐶 = 4 ways to go from B to C (car,
bus, train, plane). Then you can go from A to C (via B) using 𝑛𝐴𝐵.𝑛𝐵𝐶 = 3 ∗ 4 = 12 ways.

Roll two dice. How many outcomes?

(3, 2) ≠ (2, 3) so, answer = 6 ∗ 6 = 36 ways.

Toss 𝑛 dice. Outcome = 6𝑛 possibilities.

Toss 𝑛 coins. Outcome = 2𝑛 possibilities.

2.1.2 Permutation

An arrangement of 𝑛 symbols in a definite order is a permutation of 𝑛 symbols.

Example: How many ways to arrange 1, 2, 3 ?

Answer: 6 ways: 123, 132, 213, 312, 321, 231

• **Number of ways to arrange 1, 2, ...., 𝑛 = 𝑛 ∗ (𝑛 − 1) ∗ (𝑛 − 2) ∗ ..... ∗ 2 ∗ 1 = 𝑛!
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Definition: The number of r-tuples we can make from 𝑛 different symbols (each used at most
once) is called the number of permutations of n things taken r at a time.

𝑃𝑛,𝑟 = 𝑛!
(𝑛 − 𝑟)!

Note: 0! = 1 & 𝑃𝑛,𝑛 = 𝑛!

Proof:

𝑃𝑛,𝑟 = (choose first)(choose secoond)....(choose𝑟𝑡ℎ)
= 𝑛(𝑛 − 1)(𝑛 − 2)....(𝑛 − 𝑟 + 1)

= 𝑛(𝑛 − 1)...(𝑛 − 𝑟 + 1)(𝑛 − 𝑟)...2 ∗ 1
(𝑛 − 𝑟)...2 ∗ 1

= 𝑛!
(𝑛 − 𝑟)!

Example: How many license plates of 6 digits can be formed from numbers ${1,2,….9}? + with
no repetitions: 𝑃9,3 = 60480 + with repetitions: 9 ∗ .... ∗ 9 = 96 ways + containing repetitions:
96 − 60480 = 470961

2.1.3 Combination

How may subsets of {1, 2, 3} contain exactly 2 elements? (order isn’t important)

Answer: 3 subsets - {1, 2}, {1, 3}, {2, 3}

Definition: The number of subsets with 𝑟 elements of a set with 𝑛 elements is called number of
combinations of n things taken r at a time.

Notation: 𝐶𝑛,𝑟 or (𝑛
𝑟). These are also called binomial coefficients.

𝐶𝑛,𝑟 = 𝑛!
𝑟!(𝑛 − 𝑟)!

The difference between permutation and combination:

• Combination: (𝑎, 𝑏, 𝑐) = (𝑏, 𝑎, 𝑐) i.e. order doesn’t concern,

• Permutation: (𝑎, 𝑏, 𝑐) ≠ (𝑏, 𝑎, 𝑐) i.e. concerned with order.

Choosing a permutation is same as first choosing a combination and putting the elements in order.

14



𝑛!
(𝑛 − 𝑟)! = (𝑛

𝑟)𝑟!

𝑛!
(𝑛 − 𝑟)!𝑟! = (𝑛

𝑟)

Following results should be intuitive:

• (𝑛
𝑟) = ( 𝑛

𝑛−𝑟)

• (𝑛
0) = (𝑛

𝑛) = 1

• (𝑛
1) = ( 𝑛

𝑛−1) = 𝑛

2.1.4 Binomial Theorem

(𝑥 + 𝑦)𝑛 = Σ𝑛
𝑖=0(𝑛

𝑖)𝑥𝑖𝑦𝑛−𝑖

This is where Pascal’s triangle comes from.

Corollary: Surprising fact

Σ𝑛
𝑖=0(𝑛

𝑖) = 2𝑛

Proof: By the binomial theorem:

2𝑛 = (1 + 1)𝑛

= Σ𝑛
𝑖=0(𝑛

𝑖)1𝑖1𝑛−𝑖

2.1.5 Problems

Q. Select 2 cards from a dect without replacement and care about order? Possibilities
= 52 ∗ 51 = 2652 ways.

Q. Box of 10 sox - 2 red and 8 black. Pick 2 without replacement.

• Let 𝐴 be event that both are red.

𝑃(𝐴) = ways to pick 2 reds
ways to pick 2 sox = 2∗1

10∗9 = 1
45

• Let 𝐵 be event that both are black.

𝑃(𝐵) = 8∗9
10∗9 = 28

45
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• Let 𝐶 be one of each color. Since, 𝐴 and 𝐵 are disjoint,

𝑃(𝐶) = 1 − 𝑃 (𝐶𝑐) = 1 − 𝑃(𝐴 ∪ 𝐵) = 1 − 1
45 − 28

45 = 16
45

Q. An NBA team has 12 players. How many ways can the coach choose the starting
5?

(12
5 ) = 12!

5!7! = 792

Q. Smith is one of the players on the team. How many of 792 starting lineup include
him?

(11
4 ) = 11!

4!7! = 330

Q. 4 red marbles, 2 whites. Put them in random order.

a. P(2 end marbles are W)

𝑆 = {Possible pairs of slots that W’s occupy}

|𝑆| = (6
2) = 6!

2!(6−2)! = 15

Since, W’s must occupy end slots so, |𝐴| = (2
2) = 1

𝑃(𝐴) = |𝐴|
|𝑆| = 1

15

b. 𝑃(2 end marbles aren’t both W} = 1 − 𝑃(𝐴) = 14
15

c. 𝑃(2 W’s are side by side}

WWRRRR or RWWRRR or RRWWRR or RRRWWRR or RRRRWW

|𝐵| = 5

𝑃(𝐵) = 5
15
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2.2 Hypergeometric Distribution

Definition: You have 𝑎 objects of type 1 and 𝑏 objects of type 2. Select 𝑛 objects without
replacement from 𝑎 + 𝑏 objects. Then,

𝑃(k type 1’s were picked) = (Number of ways to choose k type 1’s out of a)(Choose n-k type 2’s out of b)
(Number of ways to choose n out of a+b)

= (𝑎
𝑘)( 𝑏

𝑛−𝑘)
(𝑎+𝑏

𝑛 )

The number of type 1’s chosen is said to have the hypergeometric distribution.

Example: 3 sox in box with 𝑎 = 2 red, 𝑏 = 1 blue. Pick 𝑛 = 3 without replacement.

𝑃(Exactly k=2 reds are picked) = (𝑎
𝑘)( 𝑏

𝑛−𝑘)
(𝑎+𝑏

𝑛 )

= (2
2)(1

1)
(3

3)
= 1

2.3 Binomial Distribution

Definition: You again have a objhects of type 1 and b objects of type 2. Now, select n objects with
replacement from 𝑎 + 𝑏 objects.

𝑃(k type 1’s were picked) = (Number of ways to choose k 1’s and n-k 2’s)
𝑃 (Choose k 1’s in a row then n-k 2’s in a row)

𝑃 (k type 1’s were picked) = (𝑛
𝑘)( 𝑎

𝑎 + 𝑏)
𝑘
( 𝑏

𝑎 + 𝑏)
𝑛−𝑘

2.4 Multinomial Coefficients

Example: 𝑛1 blue sox, 𝑛2 reds. The number of assortments is (𝑛1+𝑛2
𝑛1

). Generalization for 𝑘 types
of objects: 𝑛 = Σ𝑘

𝑖=1𝑛𝑖 The number of arrangements is

( 𝑛
𝑛1, 𝑛2, ....𝑛𝑘

) = 𝑛!
𝑛1!𝑛2!....𝑛𝑘!
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This is known as multinomial coefficient.

Example: How many ways letters in “MISSISSIPPI” be arranged?

Number of permutations of 11 letters
(Number of M’s)(Number of P’s)(Number of I’s)(Number of S’s)

= 11!
1!2!4!4!

2.5 Conditional Probability

The probability of A occurs given B occurs is

𝑃(𝐴/𝐵) = |𝐴 ∩ 𝐵|
|𝐵| =

|𝐴∩𝐵|
|𝑆|
|𝐵|
|𝑆|

= 𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵)

Definition: If 𝑃(𝐵) > 0, the conditional probability of 𝐴 given 𝐵 is

𝑃(𝐴/𝐵) = 𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵)

Remark: If 𝐴 and 𝐵 are disjoint, then 𝑃(𝐴/𝐵) = 0. If 𝐵 occurs, there is no chance that A can
occur.

What happens if 𝑃(𝐵) = 0 ? In that case, no need to consider 𝑃(𝐴/𝐵).

Example: Toss 2 dice and take the sum.

A: odd toss = {3, 5, 7, 9, 11}

B: {2, 3}

𝑃(𝐴) = 𝑃(3) + .... + 𝑃 (11) = 2
36 + 4

36 + ... + 2
36 = 1

2

𝑃(𝐵) = 1
36 + 2

36 = 1
12

𝑃(𝐴/𝐵) = 𝑃(𝐴∩𝐵)
𝑃(𝐵) =

2
36
1

12
= 2

3

Example: A couple has two kids and at least one is boy. What’s the probability that both are
boys?

𝑆 = {𝐺𝐺, 𝐺𝐵, 𝐵𝐺, 𝐵𝐵}

𝐶 ∶ Both are boys = {𝐵𝐵}

𝐷 ∶ At least 1 boy = {𝐺𝐵, 𝐵𝐺, 𝐵𝐵}

𝑃(𝐶/𝐷) = 𝑃(𝐶∩𝐷)
𝑃(𝐷) = 𝑃(𝐶)

𝑃(𝐷) =
1
4
3
4

= 1
3
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Example: A couple has two kids and at least one is born on tuesday. What is the probability that
both are boys?

𝐵𝑥[𝐺𝑥] = 𝐵𝑜𝑦[𝐺𝑖𝑟𝑙]
born on day x; x = 1,2,....7

𝑥 = 3 is Tuesday.

𝑆 = {(𝐺𝑥, 𝐺𝑦), (𝐺𝑥, 𝐵𝑦), (𝐵𝑥.𝐺𝑦), (𝐵𝑥, 𝐵𝑦), 𝑥, 𝑦 = 1, 2, ...7}

So, |𝑆| = 4 ∗ 49 = 196

i.e. 4 combination of B and G and 49 combination of x and y.

C: Both are boys (with at least one born on tuesday)

= {(𝐵𝑥, 𝐵3), 𝑥 = 1, 2, ..., 7} ∪ {(𝐵3, 𝐵𝑦), 𝑦 = 1, 2, ....7}

Note: |𝐶| = 13{to avoid double counting(𝐵3, 𝐵3)}

D: There is at least one boy born on Tuesday.

= 𝐶 ∪ {(𝐺𝑥, 𝐵3), (𝐵3, 𝐺𝑦), 𝑥, 𝑦 = 1, 2, ....7}

|𝐷| = 27

𝑃(𝐶/𝐷) = 𝑃(𝐶∩𝐷)
𝑃(𝐷) = 𝑃(𝐶)

𝑃(𝐷) =
13

196
27

197
= 13

27

Properties: Analogous to axioms of probability

• 0 ≤ 𝑃(𝐴/𝐵) ≤ 1

• 𝑃(𝑆/𝐵) = 1

• 𝐴1 ∩ 𝐴2 = 𝜙 → 𝑃(𝐴1 ∩ 𝐴2/𝐵) = 𝑃(𝐴1/𝐵) + 𝑃(𝐴2/𝐵)

• If 𝐴1, 𝐴2, ..... are all disjoint then

𝑃(𝑈∞
𝑖=1𝐴𝑖/𝐵 = Σ∞

𝑖=1𝑃(𝐴𝑖/𝐵)
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2.6 Independence

Any unrelated events are independent.

Example:

A: It rains on Mars tomorrow.

B: Coin lands on H.

Definition: A & B are independent iff 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴).𝑃 (𝐵)

Remark: If 𝑃 (𝐴) = 0, then 𝐴 is independent of any other event.

Remark: Events don’t have to be physically unrelated to be independent.

Theorem: Suppose 𝑃(𝐵) > 0. Then 𝐴 and 𝐵 are independent ↔ 𝑃(𝐴/𝐵) = 𝑃(𝐴).

Proof: A & B independent ↔ 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴).𝑃 (𝐵) ↔ 𝑃(𝐴∩𝐵)
𝑃(𝐵) = 𝑃(𝐴)

Remark: So, if 𝐴 and 𝐵 are independent, the probability of 𝐴 doesn’t depend on whether or not
𝐵 occurs.

Bayes Theorem: 𝐴 and 𝐵 are independent ↔ 𝐴′ and 𝐵′ are also independent.

Proof: Only need to prove in → direction (then ← follows trivially).

𝑃(𝐴) = 𝑃(𝐴 ∩ 𝐵′) + 𝑃(𝐴 ∩ 𝐵)

So,

𝑃(𝐴 ∩ 𝐵′) = 𝑃(𝐴) − 𝑃(𝐴 ∩ 𝐵)
= 𝑃(𝐴) − 𝑃(𝐴).𝑃 (𝐵) {A, B are independent}
= 𝑃(𝐴){1 − 𝑃(𝐵)}
= 𝑃(𝐴).𝑃 (𝐵′)

Don’t confuse independence with disjointness!

Theorem: If 𝑃(𝐴) > 0 and 𝑃(𝐵) > 0, 𝐴 and 𝐵 can’t be independent and disjoint at the same time.

Proof: Suppose 𝐴 and 𝐵 are disjoint, 𝐴 ∩ 𝐵 = 𝜙 . Then, 𝑃(𝐴 ∩ 𝐵) = 0 < 𝑃(𝐴).𝑃 (𝐵). Thus, 𝐴
and 𝐵 aren’t independent. Similarly, independent doesn’t imply disjoint.

Remark: In fact, independence and disjointness are almost opposite. If 𝐴 and 𝐵 are disjoint and
𝐴 occurs, then you have information that 𝐵 cannot occur. So, 𝐴 and 𝐵 can’t be independent.

Extension to more than two events:

Definition: A, B, C are independent iff
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• 𝑃(𝐴 ∩ 𝐵 ∩ 𝐶) = 𝑃 (𝐴).𝑃 (𝐵).𝑃 (𝐶)

• All pairs are independent:

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴).𝑃 (𝐵)
𝑃(𝐴 ∩ 𝐶) = 𝑃(𝐴).𝑃 (𝐶)
𝑃(𝐵 ∩ 𝐶) = 𝑃(𝐵).𝑃 (𝐶)

General Definition: 𝐴1, ......, 𝐴𝑘 are independent iff 𝑃(𝐴1 ∩ ..... ∩ 𝐴𝑘) = 𝑃(𝐴𝑘) and all subsets of
{𝐴1, ...., 𝐴𝑘} are independent.

Independent Trials: Perform 𝑛 trials of an experiment such that the outcome of one trial is inde-
pendent of outcomes of other trials. Eg. Flip 3 coins independently.

Remark: For independent trials, you just multiply the individual probabilities.

Eg. Flip a coin infinitely many times (each flip is independent of others).

𝑃𝑛 = 𝑃(First H on nth trial)
= 𝑃(𝑇 𝑇 ...𝑇⏟

𝑛−1
𝐻)

= 𝑃(𝑇 ).𝑃 (𝑇 )...𝑃 (𝑇 )⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−1

.𝑃 (𝐻)

= (1
2)𝑛−1.12 = 1

2𝑛

= 1
2𝑛 {Each has probability 1/2}

𝑃(𝐻 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦) = Σ∞
𝑛=1𝑃𝑛

= Σ∞
𝑛=12−𝑛

= 1
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2.7 Partitions and laws of probability

Partition of Sample Space split the sample space into disjoint, yet all encompassing subsets.

Definition: The events 𝐴1, 𝐴2, ...., 𝐴𝑛 form a partition of sample space 𝑆 if

• 𝐴1, 𝐴2, ...., 𝐴𝑛 are disjoint.

• 𝑈𝑛
𝑖=1𝐴𝑖 = 𝑆

• 𝑃(𝐴𝑖) > 0 for all 𝑖.

Remark: When an experiment is performed, exactly one 𝐴𝑖’s occur.

Example: 𝐴 and 𝐴′ form partition.

Suppose 𝐴1, 𝐴2, ...., 𝐴𝑛 form partition of 𝑆 and 𝐵 is arbitrary event. Then,

𝐵 = 𝑈𝑛
𝑖=1(𝐴𝑖 ∩ 𝐵)

Figure 1: Partitions

𝑃(𝐵) = 𝑃 [𝑈𝑛
𝑖=1(𝐴𝑖 ∩ 𝐵)]

= Σ𝑛
𝑖=1𝑃(𝐴𝑖 ∩ 𝐵) (Since𝐴1, 𝐴2, ...𝐴𝑛 are disjoint)

= Σ𝑛
𝑖=1𝑃(𝐴𝑖)𝑃 (𝐵/𝐴𝑖) (Definition of conditional Probability)

This is law of probability.
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Example: Suppose we have 10 Georgia Tech students and 20 University of Georgia students taking
a test. GT students have 95% chance of passing but UGA have 50%. Determine probability that
he/she passes.

𝑃(𝑝𝑎𝑠𝑠𝑒𝑠) = 𝑃(𝐺𝑇 )𝑃 (𝑝𝑎𝑠𝑠𝑒𝑠/𝐺𝑇 ) + 𝑃(𝑈𝐺𝐴)𝑃(𝑝𝑎𝑠𝑠𝑒𝑠/𝑈𝐺𝐴)

2.8 Bayes Theorem

Immediate consequence of law of total probability.

Bayes Theorem: If 𝐴1, 𝐴2, ...𝐴𝑛 form partition of 𝑆 and 𝐵 is any event then,

𝑃(𝐴𝑗/𝐵) = 𝑃(𝐴𝑗 ∩ 𝐵)
𝑃(𝐵)

= 𝑃(𝐴𝑗)𝑃 (𝐵/𝐴𝑗)
Σ𝑛

𝑖=1𝑃(𝐵/𝐴𝑖)

The 𝑃(𝐴𝑗)’s are prior probabilities (“before B”).

The 𝑃(𝐴𝑗/𝐵)’s are posterior probabilities (“after B”).

The 𝑃(𝐴𝑗/𝐵)’s add up to 1.

2.9 Probability Problems

Birthday Problem

Q. There are n people in room. Find the probability that at least two have the same
birthday. (Ignore Feb 29 and assume that all 365 days have equal probability.

The (simple) sample size is 𝑆 = {(𝑥1, ....., 𝑥𝑛) ∶ 𝑥𝑖 ∈ {1, 2, ....365}, 𝑉𝑖}

(𝑥𝑖 is person 𝑖’s birthday) and note that |𝑆| = (365)𝑛.

Let A: All birthdays are different then,

𝑃(𝐴) = (365)(364)....(365 − 𝑛 + 1)
365

𝑛

= 1.364
365.363

365....365 − 𝑛 + 1
365

𝑃(𝐴′) = 1 − 𝑃(𝐴)

When, 𝑛 = 366, 𝑃(𝐴′) = 1

For, 𝑃(𝐴′) > 1
2 , n must be ≥ 23.
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When, 𝑛 = 50, 𝑃(𝐴′) = 0.97, 𝑃(𝐴′) is probability of at least one birthday match (not unique).

The Envelope Problem

Q. A group of n people receives n envelopes with their name on them but someone
has completely mixed up the envelopes. Find the probability that at least one person
will receive the proper envelope.

Let 𝐴𝑖: Person i receive correct envelope.

We want 𝑃 (𝐴1 ∪ 𝐴2.... ∪ 𝐴𝑛)

By principle of Inclusion-Exclusion,

𝑃 (𝐴1 ∪ 𝐴2 ∪ .... ∪ 𝐴𝑛) = Σ𝑛
𝑖=1𝑃(𝐴𝑖) − ΣΣ𝑖<𝑗𝑃(𝐴𝑖 ∩ 𝐴𝑗) + ΣΣΣ𝑖<𝑗<𝑘𝑃(𝐴𝑖 ∩ 𝐴𝑗 ∩ 𝐴𝑘)
+ ..... + (−1)𝑛−1𝑃(𝐴1 ∩ 𝐴2 ∩ ....𝐴𝑛)

Since all 𝑃(𝐴𝑖)’s are same, all of 𝑃(𝐴𝑖 ∩ 𝐴𝑗)’s are the same.

𝑃(𝐴1∪𝐴2∪....∪𝐴𝑛) = 𝑛𝑃(𝐴1)−(𝑛
2)𝑃(𝐴1∩𝐴2)+(𝑛

3)𝑃(𝐴1∩𝐴2∩𝐴3)+.....+(−1)𝑛−1𝑃(𝐴1∩𝐴2...∩𝐴𝑛)

𝑃 (𝐴1) = 1
𝑛

𝑃(𝐴2) = 1
𝑛 − 1

𝑃(𝐴1 ∩ 𝐴2) = 1
𝑛(𝑛 − 1)

𝑃(𝐴1 ∪ 𝐴2 ∪ .... ∪ 𝐴𝑛) = 𝑛
𝑛 − (𝑛

2) 1
𝑛. 1

𝑛 − 1 + (𝑛
3) 1

𝑛. 1
𝑛 − 1. 1

𝑛 − 2 + .... + (−1)𝑛−1 1
𝑛!

= 1 − 1
2! + 1

3! + .... + (−1)𝑛−1 1
𝑛!

= 1 − 1
𝑒 {Very similar to Mclaurin Series}

= 0.6321

If 𝑛 = 4 envelopes:

𝑃(𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ 𝐴4) = 1 − 1
2! + 1

3! − 1
4!

= 0.625
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3. Random Variables

3.1 Univariate Random Variables

Definition: A random variable (RV) is a function from the sample space to the real line. 𝑋 ∶
𝑆 → ℝ.
Example: Flip 2 coins: 𝑆 = {𝐻𝐻, 𝐻𝑇 , 𝑇 𝐻, 𝑇 𝑇 }
Suppose 𝑋 is RV corresponding to the number of 𝐻’s,

𝑋(𝑇 𝑇 ) = 0, 𝑋(𝐻𝑇 ) = 1, 𝑋(𝐻𝐻) = 2
𝑃(𝑋 = 0) = 1

4 , 𝑃 (𝑋 = 1) = 1
2 , 𝑃(𝑋 = 2) = 1

4

Notation: Capital letters like 𝑋, 𝑌 , 𝑍 usually represent RV’s. Small letters like 𝑥, 𝑦, 𝑧 represent
particular values of RV’s.

Example: Flip a coin

𝑋 =
⎧{
⎨{⎩

1 if T

0 if H

Roll a die

𝑌 =
⎧{
⎨{⎩

0 if {1,2,3}

1 if {4,5,6}

For our purpose, 𝑋 and 𝑌 are same, since 𝑃(𝑋 = 0) = 𝑝(𝑌 = 0) = 1
2 and 𝑃(𝑋 = 1) = 𝑃(𝑌 =

1) = 1
2 .

Example: Select a real number at random between ) and 1. There are infinite number of “equally
likely” outcome.

Conclusion: P(we choose the individual point x) = P(X = x) = 0.

But 𝑃(𝑋 ≤ 0.65) = 0.65 and 𝑃(𝑋 ∈ [0.3, 0.7]) = 0.4.
If A is an interval in [0, 1] then 𝑃(𝑋 ∈ 𝐴) is the length of 𝐴.

Definition: If a number of possible values of a RV X is finite or countably infinite then X is discrete
RV otherwise,

A continuous RV is one with probability 0 at every point.

Example:

• Flip a coin - get H or T. Discrete

• Pick a point at random in [0, 1]. Continuous

• The amount of time you wait in line is either 0 (with positive probability) or some positive
real number - a combined discrete - continuous RV.
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3.1.1 Discrete Random Variable

Definition: If 𝑋 is discrete RV, its probability mass function (pmf) is

𝑓(𝑥) = 𝑃(𝑋 = 𝑥)

Note that 0 ≤ 𝑓(𝑥) ≤ 1, ∑𝑥 𝑓(𝑥) = 1

Example: Flip 2 coins. Let X be number of heads.

𝑓(𝑥) =
⎧{{
⎨{{⎩

1
4 if x = 0 or 2
1
2 if x = 1

0 otherwise

3.1.1.2 Uniform Distribution: Uniform distribution of integers 1, 2, ....𝑛. 𝑋 can equal 1, 2, ....𝑛
each with probability 1

𝑛 .

𝑓(𝑖) = 1
𝑛 𝑖 = 1, 2, .....𝑛

3.1.1.2 Binomial Distribution: Let 𝑋 denote number of “successes” from 𝑛 independent trials
such that 𝑃 (success) at each trial is 𝑝 (0 ≤ 𝑝 ≤ 1). Then 𝑋 has the binomial distribution with
parameters 𝑛 and 𝑝. The trials are referred to as Bernoulli Trials.

Notation: 𝑋 ∼ 𝐵𝑒𝑟𝑛(𝑛, 𝑝)

Example: Roll a die 3 independent times. Find P(Get exactly two 6’s)

“success (6)” and “failure” (1,2,3,4,5)

All trials are independent, 𝑃(𝑠𝑢𝑐𝑐𝑒𝑠𝑠) = 1
6 doesn’t change from trial to trial.

Let X = number of 6’s. Then 𝑋 ∼ 𝐵𝑒𝑟𝑛(3, 1
6).

Theorem: If 𝑋 ∼ 𝐵𝑒𝑟𝑛(𝑛, 𝑝) then probability of 𝑘 successes in n trials is

𝑃(𝑋 = 𝑘) = (𝑛
𝑘)𝑝𝑘𝑞𝑛−𝑘

where,
𝐾 = 0, 1, ....𝑛 and 𝑞 = 1 − 𝑝

Proof: Consider the particular sequence of success and failures.

𝑆𝑆...𝑆⏟
𝑘 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝐹𝐹...𝐹⏟
𝑛−𝑘 𝑓𝑎𝑖𝑙𝑢𝑟𝑒

𝑝𝑟𝑜𝑏 = 𝑝𝑘𝑞𝑛−𝑘
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The number of ways to arrange the sequence is (𝑛
𝑘).

Example: Roll 2 dice and get the sum. Repeat 12 times. Find P(Sum will be 7 or 11 exactly 3
times).

𝑃(7 or 11) = 𝑃(7) + 𝑃(11)

= 7
36 + 2

36
= 2

9

So, 𝑋 ∼ 𝐵𝑖𝑛(12, 2
9) then,

𝑃(𝑋 = 3) = (12
3 )(2

9)
3
(7

9)
9

3.1.1.3 Poisson Distribution: If 𝑃(𝑋 = 𝑘) = 𝑒−𝜆𝜆𝑘
𝑘! , 𝑘 = 0, 1, 2, ...𝜆, 𝜆 > 0, we say that X has

the Poisson distribution with parameter 𝜆.

Notation: 𝑋 ∼ 𝑃𝑜𝑖𝑠(𝜆)

Example: Suppose the number of raisins in a cup of cookie dough is Pois(10). Find the probability
that cup of dough has at least 4 raisins.

𝑃(𝑋 ≥ 4) = 1 − 𝑃(𝑋 = 0, 1, 2, 3)

= 1 − 𝑒−10(100

0! + 101

1! + 102

2! + 103

3! )

= 0.9897

3.1.2 Continuous Random Variables

Example:Pick a point X randomly between 0 and 1 and define the continuous function.

𝑓(𝑥) =
⎧{
⎨{⎩

1 if 0 ≤ 𝑥 ≤ 1
0otherwise

Intuitively, if 0 ≤ 𝑎 ≤ 𝑏 ≤ 1 then,

𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = the ”area” under f(x) from a to b

= 𝑏 − 𝑞
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Definition: Suppose X is a continuous RV, the magic function f(x) is probability density function
(PDF) if

• ∫ℝ 𝑓(𝑥)𝑑𝑥 = 1 (area under the f(x) is 1)
• 𝑓(𝑥) ≥ 0
• If 𝐴 ⊆ ℝ, then 𝑃(𝑋 ∈ 𝐴) = ∫𝐴 𝑓(𝑥)𝑑𝑥 (probability that X is in a certain region of A)

Remark: If X is continuous RV then,

𝑃(𝑎 < 𝑋 < 𝑏) = ∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥

An individual point has probability 0 i.e. 𝑃(𝑥 = 𝑥) = 0.

If X is discrete then 𝑓(𝑥) = 𝑃(𝑋 = 𝑥) and must have 0 ≤ 𝑓(𝑥) ≤ 1.

If X is continuous,

• 𝑓(𝑥) is continuous,
• Instead think of 𝑓(𝑥)𝑑𝑥 ≈ 𝑃(𝑥 < 𝑋 < 𝑥 + 𝑑𝑥).
• Must have 𝑓(𝑥) ≥ 0 and possibly > 1.

3.1.2.1 Uniform Distribution If X is “equally likely” o be anywhere between a and b then 𝑋
has the uniform distribution on (𝑎, 𝑏).

𝑓(𝑥) =
⎧{
⎨{⎩

1
𝑏−𝑎 if 𝑎 < 𝑥 < 𝑏
0 otherwise

Notation: 𝑋 ∼ 𝑈𝑛𝑖𝑓(𝑎, 𝑏)

Remark: ∫ℝ 𝑓(𝑥)𝑑𝑥 = ∫𝑏
𝑎

1
𝑏−𝑎𝑑𝑥 = 1

Example: If 𝑋 ∼ 𝑈𝑛𝑖𝑓(−2, 8) then,

𝑃(−1 < 𝑋 < 6) = ∫
6

−1

1
8 − (−2)𝑑𝑥 = 0.7

3.1.2.2 Exponential Distribution X has the exponential distribution with parameter 𝜆 > 0 if
it has PDF 𝑓(𝑥) = 𝜆𝑒−𝜆𝑥, for 𝑥 ≥ 0.

Notation: 𝑋 ∼ 𝐸𝑥𝑝(𝜆)

Remark: ∫ℝ 𝑓(𝑥)𝑑𝑥 = ∫∞
0 𝜆𝑒−𝜆𝑥𝑑𝑥 = 1

Example: Suppose X is a continuous RV with PDF
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𝑓(𝑥) =
⎧{
⎨{⎩

𝑐𝑥2 if 0 < 𝑥 < 2
0 otherwise

First of all, let’s find c. Noting that PDF must integrate to 1 we have,

1 = ∫
ℝ

𝑓(𝑥)𝑑𝑥

1 = ∫
2

0
𝑐𝑥2𝑑𝑥

1 = 𝑐𝑥3

3 ∣
2

0

1 = 8𝑐
3

𝑐 = 3
8

this means

𝑓(𝑥) = 3𝑥2

8

𝑃 (0 < 𝑋 < 1 ∣ 1
2 < 𝑋 < 3

2) = 𝑃(0 < 𝑋 < 1 ∩ 1
2 < 𝑋 < 3

2)
𝑃 (1

2 < 𝑋 < 3
2)

= 𝑃(1
2 < 𝑋 < 1)

𝑃(1
2 < 𝑋 < 3

2)

=
∫1

1
2

3
8𝑥2 𝑑𝑥

∫
3
2

1
2

3
8𝑥2 𝑑𝑥

= 7
26

X has the standard normal distribution if its PDF is

𝜙(𝑥) = 1√
2𝜋𝑒− 𝑥2

2 for all 𝑥 ∈ ℝ

3.1.3 Cumulative Probability Distribution

Definition: For any RV (discrete or continuous), the cumulative distribution function (cdf) is defined
for all x by,

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥)
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For X discrete,
𝐹(𝑥) = Σ{𝑦/𝑦≤𝑥}𝑓(𝑦) = Σ{𝑦/𝑦≤𝑥}𝑃(𝑋 = 𝑦)

For X condinuous,

𝐹(𝑥) = ∫
𝑥

−∞
𝑓(𝑦)𝑑𝑦

Example: Flip a coin twice. let X = number of H’s.

𝑋 =
⎧{
⎨{⎩

0 or 2 with prob 1
4

1 with prob 1
2

The CDF is a step function

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) =

⎧{{{
⎨{{{⎩

0 if 𝑥 < 0
1
4 if 0 ≤ 𝑥 < 1
3
4 if 1 ≤ 𝑥 < 2
1 if 𝑥 ≥ 2

Explanation

X defined as number of heads from two independent flips of a fair coin. 𝑋 = 0 (no heads),
𝑋 = 1 (one head) and 𝑋 = 2 (two heads). The probability distribution of X follows binomial
distribution i.e. 𝑋 ∼ 𝐵𝑖𝑛𝑜𝑚(2, 1

2).

𝑃(𝑋 = 0) = (2
0)(1

2)0(1
2)2 = 1

4

𝑃(𝑋 = 1) = (2
0)(1

2)1(1
2)1 = 1

2

𝑃(𝑋 = 2) = (2
0)(1

2)2(1
2)0 = 1

4
For 𝑥 < 0, 𝐹(𝑥) = 0.
For 0 ≤ 𝑥 < 1, 𝐹(𝑥) = 𝑃 (𝑋 = 0) = 1

4 .
For 1 ≤ 𝑥 < 2, 𝐹(𝑥) = 𝑃 (𝑋 = 0) + 𝑃(𝑋 = 1) = 1

4 + 1
2 = 3

4
For 𝑥 ≥ 2, 𝐹(𝑥) = 𝑃(𝑋 = 0) + 𝑃(𝑋 = 1) + 𝑃(𝑋 = 2) = 1

4 + 1
2 + 1

4 = 1

Warning: For discrete RVs, be careful about ≤ vs < as the endpoints of the range (where step
function jumps).

Theorem (Continuous CDF): If X is continuous RV, then 𝑓(𝑥) = 𝐹 ′(𝑥) (assuming the derivative
exists.)
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Proof:
𝐹 ′(𝑥) = 𝑑

𝑑𝑥 ∫
𝑥

−∞
𝑓(𝑡)𝑑𝑡 = 𝑓(𝑥), by the fundamental theorem of calculus

Example: 𝑋 ∼ 𝑈𝑛𝑖𝑓(0, 1). The PDF and cdf are

𝑓(𝑥) =
⎧{
⎨{⎩

1 if 0 < 𝑥 < 1
0 otherwise

𝐹(𝑥) =
⎧{{
⎨{{⎩

0 if 𝑥 ≤ 0
𝑥 if 0 < 𝑥 < 1
1 if 𝑥 ≥ 1

Explanation

𝑓(𝑥) = 1
1 − 0 = 1 for 0 < 𝑥 < 1

So,

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫
𝑥

−∞
𝑓(𝑡)𝑑𝑡

For 𝑥 ≤ 0, 𝐹(𝑥) = 0 since all values are between 0 and 1.
For 0 < 𝑥 < 1, 𝐹(𝑥) = ∫𝑥

−∞ 1𝑑𝑡 = 𝑥.
For 𝑥 ≥ 1, 𝐹(𝑥) = 1 since 𝑥 ≥ 1 includes all the probability.

Example: 𝑋 ∼ 𝐸𝑥𝑝(𝜆)

𝑓(𝑥) =
⎧{
⎨{⎩

𝜆𝑒−𝜆𝑥 if 𝑥 > 0
0 otherwise

𝐹(𝑥) = ∫
𝑥

−∞
𝑓(𝑡)𝑑𝑡 =

⎧{
⎨{⎩

0 if 𝑥 ≤ 0
1 − 𝑒−𝜆𝑥 if 𝑥 > 0

We can use CDF to find median of X that is the point m such that,

0.5 = 𝐹(𝑚) = 1 − 𝑒−𝜆𝑚𝑚 = ( 1
𝜆)𝑙𝑛(2)
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Explanation

For, 𝑥 ≤ 0, 𝑓(𝑥) = 0. So, 𝐹(𝑥) = 0.
For, 𝑥 > 0, 𝐹(𝑥) = ∫𝑥

0 𝜆𝑒−𝜆𝑥𝑑𝑥 = 1 − 𝑒−𝜆𝑥

Properties of CDF

𝐹(𝑥) is non-decreasing in x i.e. 𝑎 < 𝑏 implies 𝐹(𝑎) ≤ 𝐹(𝑏).

lim
𝑥→∞

𝐹(𝑥) = 1 lim
𝑥→−∞

𝐹(𝑥) = 0

𝐹(𝑥) is right continuous at every point x.

Theorem: 𝑃(𝑋 > 𝑥) = 1 − 𝐹(𝑥)
Proof:

By complements,

𝑃(𝑋 > 𝑥) = 1 − 𝑃(𝑋 ≤ 𝑥) = 1 − 𝐹(𝑥)

Theorem: 𝑎 < 𝑏 ⟹ 𝑃 (𝑎 < 𝑋 ≤ 𝑏) = 𝐹(𝑏) − 𝐹(𝑎).
Proof: Since 𝑎 < 𝑏, we have,

𝑃 (𝑎 < 𝑋 ≤ 𝑏) = 𝑃(𝑋 > 𝑎, 𝑋 ≤ 𝑏)
= 𝑃(𝑋 > 𝑎) + 𝑃(𝑋 ≤ 𝑏) − 𝑃(𝑋 > 𝑎 ∪ 𝑋 ≤ 𝑏)
= 1 − 𝐹(𝑎) + 𝐹(𝑏) − 1
= 𝐹(𝑏) − 𝐹(𝑎)

where,
𝑃(𝑋 > 𝑎) = 1 − 𝐹(𝑎)𝑃(𝑋 ≤ 𝑏) = 𝐹(𝑏)𝑃 (𝑋 > 𝑎 ∪ 𝑋 ≤ 𝑏) = 1

3.1.4 Great Expectations

Definition: The mean or expected value or average of random variable X is

𝜇 = 𝐸(𝑥) =
⎧{
⎨{⎩

Σ𝑥𝑥𝑓(𝑥) if X is discrete

∫ℝ 𝑥𝑓(𝑥)𝑑𝑥 if X is continuous

The mean gives an indication of RV’s central tendency. Think of it as a weighted average of the
possible x’s where the weights are given by f(x).
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Example: Suppose X has the Bernoulli distribution with parameter p i.e. (𝑃(𝑋 = 1) = 𝑝 and
𝑃(𝑋 = 0) = 𝑞 = 1 − 𝑝). Then,

𝐸(𝑥) = Σ𝑥𝑥𝑓(𝑥) = 1.𝑝 + 0.𝑞 = 𝑝

Example: Die toss. 𝑋 = 1, 2, ...6 each with probability 1
6 . Then,

𝐸(𝑥) = Σ𝑥𝑥𝑓(𝑥) = 1.16 + ..... + 6.16 = 3.5

Suppose X has the geometric distribution with the parameter p i.e. x is the number of Bern(p)
trials until you obtain your first success (e.g. 𝐹𝐹𝐹𝑆 gives x = 4).

𝑓(𝑥) = (1 − 𝑝)𝑥−1𝑝, 𝑥 = 1, 2, ...

Notation: 𝑋 ∼ 𝐺𝑒𝑜𝑚(𝑝)

Suppose I take independent foul shots but the chanse of making any particular shot is only 0.4.
What’s the probability that it will take me at least 3 tries to make succeessful shot?

The number of tries until my first success is 𝑋 ∼ 𝐺𝑒𝑜𝑚(0.4). Thus,

𝑃(𝑋 ≥ 3) = 1 − 𝑃(𝑋 ≤ 2)
= 1 − 𝑃(𝑋 = 1) − 𝑃(𝑋 = 2)
= 1 − 0.4 − 0.6 ∗ 0.4
= 0.36

Now, lets find the expected value of 𝑋 ∼ 𝐺𝑒𝑜𝑚(𝑝)

33



𝐸(𝑋) = Σ𝑥𝑥𝑓(𝑥)
= Σ∞

𝑥=1𝑥𝑞𝑥−1𝑝 (where 𝑞 = 1 − 𝑝)

= 𝑝Σ∞
𝑥=1

𝑑
𝑑𝑞 𝑞𝑥

= 𝑝 𝑑
𝑑𝑞 Σ∞

𝑥=1𝑞𝑥 (swap derivative and sum)

= 𝑝 𝑑
𝑑𝑞

𝑞
1 − 𝑞 (geometric sum)

= 𝑝{(1 − 𝑞) − 𝑞(−1)
(1 − 𝑞)2 }

= 1
𝑝

Example: 𝑋 ∼ 𝐸𝑥𝑝(𝜆). 𝑓(𝑥) = 𝜆𝑒−𝜆𝑥, 𝑥 ≥ 0. Then,

𝐸(𝑋) = ∫
ℝ

𝑥𝑓(𝑥)𝑑𝑥

= ∫
∞

0
𝑥𝜆𝑒−𝜆𝑥𝑑𝑥

= −𝑥𝑒−𝜆𝑥∣∞0 − ∫
∞

0
(−𝑒−𝜆𝑥𝑑𝑥 (by parts)

= ∫
∞

0
𝑒−𝜆𝑥𝑑𝑥 (L’ Hôspital rule)

= 1
𝜆

3.1.4 Law of the unconscious statistician (LOTUS)

Theorem: The expected value of a function of X, say ℎ(𝑥) is,

𝐸[ℎ(𝑋)] =
⎧{
⎨{⎩

∑𝑥 ℎ(𝑥)𝑓(𝑥) if 𝑋 is discrete,
∫ℝ ℎ(𝑥)𝑓(𝑥) 𝑑𝑥 if 𝑋 is continuous.

𝐸[ℎ(𝑥)] is weighted function of ℎ(𝑥) where the weights are 𝑓(𝑥)’s.

Remark: It looks like a definition, but it’s really a theorem - that’s why they call it LOTUS.

Example: 𝐸[𝑠𝑖𝑛𝑥] = ∫ℝ 𝑠𝑖𝑛𝑥𝑓(𝑥)𝑑𝑥
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Definition: The 𝑘𝑡ℎ moment is

𝐸[𝑋𝑘] =
⎧{
⎨{⎩

∑𝑥 𝑥𝑘𝑓(𝑥) if X is discrete

∫ℝ 𝑥𝑘𝑓(𝑥)𝑑𝑥 if X is continuous

Example: Suppose 𝑋 ∼ 𝐵𝑒𝑟𝑛(𝑝) so that 𝑓(1) = 𝑝 and 𝑓(0) = 𝑞.

𝐸[𝑋𝑘] = ∑
𝑥

𝑥𝑘𝑓(𝑥) = 0𝑘𝑞 + 1𝑘𝑝 = 𝑝 for all 𝑘!

Example: Suppose 𝑋 ∼ 𝐸𝑥𝑝(𝜆). 𝑓(𝑥) = 𝜆𝑒−𝜆𝑥, 𝑥 ≥ 0 then,

𝐸[𝑋𝑘] = ∫
ℝ

𝑥𝑘𝑓(𝑥)𝑑𝑥

= ∫
∞

0
𝑥𝑘𝜆𝑒−𝜆𝑥𝑑𝑥

= ∫
∞

0
( 𝑦

𝜆)
𝑘
𝜆𝑒−𝜆 𝑦

𝜆
1
𝜆𝑑𝑦 (substitute 𝑦 = 𝜆𝑥)

= 1
𝜆𝑘 ∫

∞

0
𝑦𝑘+1−1𝑒−𝑦𝑑𝑦

= 𝑇 (𝑘 + 1)
𝜆𝑘 (by definition of gamma function)

= 𝑘!
𝜆𝑘

Defintion: The 𝑘𝑡ℎ central moment of X is

𝐸[(𝑋 − 𝜇)𝑘] =
⎧{
⎨{⎩

∑𝑥(𝑥 − 𝜇)𝑘𝑓(𝑥) X is discrete

∫ℝ(𝑥 − 𝜇)𝑘𝑓(𝑥)𝑑𝑥 X is continuous

Definition: The variance of X is the second central moment i.e. the expected squared deviation of
X from its mean.

𝑉 𝑎𝑟(𝑋) = 𝐸[(𝑋 − 𝜇)2]

Notation: 𝜎2 = 𝑉 𝑎𝑟(𝑋)

Definition: The standard deviation of X is 𝜎 = +√𝑣𝑎𝑟(𝑥)

Example: 𝑋 ∼ 𝐵𝑒𝑟𝑛(𝑝) so that 𝑓(1) = 𝑝, 𝑓(0) = 𝑞 = 1 − 𝑝

𝜇 = 𝐸[𝑋] = 𝑝 𝑡ℎ𝑒𝑛,
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𝑉 𝑎𝑟[𝑋] = 𝐸[(𝑋 − 𝜇)2]
= ∑

𝑥
(𝑥 − 𝑝)2𝑃(𝑋 = 𝑥)

= (0 − 𝑝)2 ⋅ 𝑞 + (1 − 𝑝)2 ⋅ 𝑝
= 𝑝2𝑞 + 𝑞2𝑝
= 𝑝𝑞(𝑝 + 𝑞)
= 𝑝𝑞 (since 𝑝 + 𝑞 = 1)

Theorem: For any ℎ(𝑥) and constants 𝑎 and 𝑏 - “shift happens”,

𝐸[𝑎ℎ(𝑋) + 𝑏] = 𝑎𝐸[ℎ(𝑋)] + 𝑏

Proof:
𝐸[𝑎ℎ(𝑋) + 𝑏] = ∫

ℝ
(𝑎ℎ(𝑥) + 𝑏)𝑓(𝑥)𝑑𝑥

= 𝑎 ∫
ℝ

ℎ(𝑥)𝑓(𝑥)𝑑𝑥 + 𝑏 ∫
ℝ

𝑓(𝑥)𝑑𝑥

= 𝑎𝐸[ℎ(𝑥)] + 𝑏
Corrollary: In particular,

𝐸[𝑎𝑋 + 𝑏] = 𝑎𝐸[𝑋] + 𝑏

Theorem (Easier way to calculate variance):

𝑉 𝑎𝑟(𝑋) = 𝐸[𝑋2] − (𝐸[𝑋])2

Proof:
𝑉 𝑎𝑟(𝑋) = 𝐸[(𝑋 − 𝜇)2]

= 𝐸[𝑋2 − 2𝜇𝑋 + 𝜇2]
= 𝐸[𝑋2] − 2𝜇𝐸[𝑋] + 𝜇2

= 𝐸[𝑋2] − 𝜇2 where 𝐸[𝑋] = 𝜇

Example: Suppose 𝑋 ∼ 𝐵𝑒𝑟𝑛(𝑝). Recall that 𝐸[𝑋𝑘] = 𝑝 for all 𝑘 = 1, 2, .... Then,

𝑉 𝑎𝑟[𝑋] = 𝐸[𝑋2] − (𝐸[𝑋])2

= 𝑝 − 𝑝2

= 𝑝 ⋅ 𝑞

Example: 𝑋 ∼ 𝑈𝑛𝑖𝑓(𝑎, 𝑏). 𝑓(𝑥) = 1
𝑏−𝑎 , 𝑎 < 𝑥 < 𝑏 then,

𝐸[𝑋] = ∫
ℝ

𝑓(𝑥)𝑑𝑥 = ∫
𝑏

𝑎

𝑥
𝑏 − 𝑎𝑑𝑥 = 𝑎 + 𝑏

2
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𝐸[𝑋2] = ∫
ℝ

𝑥𝑓(𝑥)𝑑𝑥 = ∫
𝑏

𝑎

𝑥2

𝑏 − 𝑎𝑑𝑥 = 𝑎2 + 𝑎𝑏 + 𝑏2

3

𝑉 𝑎𝑟(𝑋) = 𝐸[𝑋2] − (𝐸[𝑋])2 = (𝑎 − 𝑏)2

12
Theorem: Variance doesn’t put up with shift b.

𝑉 𝑎𝑟(𝑎𝑋 + 𝑏) = 𝑎2 ⋅ 𝑉 𝑎𝑟(𝑋)

Proof:
𝑉 𝑎𝑟(𝑎𝑋 + 𝑏) = 𝐸[(𝑎𝑋 + 𝑏)2] − (𝐸[𝑎𝑋 + 𝑏])2

= 𝐸[𝑎2𝑋2 + 𝑏2 + 2𝑎𝑏𝑋] − (𝑎𝐸[𝑋] + 𝑏)2

= 𝑎2𝐸[𝑋2] + 𝑏2 + 2𝑎𝑏𝐸[𝑋] − 𝑎2(𝐸[𝑋])2 − 2𝑎𝑏𝐸[𝑋] − 𝑏2

= 𝑎2{𝐸[𝑋2] − (𝐸[𝑋])2}
= 𝑎2𝑉 𝑎𝑟(𝑋)

Example: 𝑋 ∼ 𝐵𝑒𝑟𝑛(0.3)
𝐸[𝑋] = 𝑝 = 0.3

𝑉 𝑎𝑟[𝑋] = 𝑝𝑞 = 0.3 ∗ 0.7 = 0.21

Let
𝑌 = ℎ(𝑥) = 4𝑥 + 5 then,

𝐸[𝑌 ] = 𝐸[4𝑋 + 5] = 4𝐸[𝑋] + 5 = 6.2

𝑉 𝑎𝑟[𝑌 ] = 𝑉 𝑎𝑟[4𝑋 + 5] = 16𝑉 𝑎𝑟[𝑋] = 3.36

Approximations to 𝐸[ℎ(𝑥)] and 𝑉 𝑎𝑟[ℎ(𝑥)]

Sometimes 𝑌 = ℎ(𝑥) is messy and we may have to approximate 𝐸[ℎ(𝑥)] and 𝑉 𝑎𝑟[ℎ(𝑥)] via a Taylor
series approach. Let 𝜇 = 𝐸[𝑋] and 𝜎2 = 𝑉 𝑎𝑟(𝑋) and note that

𝑌 = ℎ(𝜇) + (𝑋 − 𝜇) ⋅ ℎ′(𝜇) + (𝑋 − 𝜇)2

2 ⋅ ℎ″(𝜇) + 𝑅

where, R is remainder term that we will ignore. Then,

𝐸[𝑌 ] = ℎ(𝜇) + 𝐸[𝑋 − 𝜇] ⋅ ℎ′(𝜇) + 𝐸[(𝑋 − 𝜇)2]
2 ⋅ ℎ″(𝜇) = ℎ(𝜇) + ℎ″(𝜇)𝜎2

2

and (now an even-crude approximation)

𝑉 𝑎𝑟(𝑌 ) = 𝑉 𝑎𝑟[ℎ(𝜇) + (𝑋 − 𝜇) ⋅ ℎ′(𝜇)] = [ℎ′(𝜇)]2𝜎2

Example: Suppose 𝑋 has pdf 𝑓(𝑥) = 3𝑥2, 0 ≤ 𝑥 ≤ 1 and we want to test out our approximations
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on the “complicated” random variable 𝑌 = ℎ(𝑋) = 𝑋 3
4 .

𝐸[𝑌 ] = ∫
ℝ

𝑥 3
4 ⋅ 𝑓(𝑥)𝑑𝑥 = ∫

1

0
3𝑥 11

4 𝑑𝑥 = 4
5

𝐸[𝑌 2] = ∫
ℝ

𝑥 6
4 𝑓(𝑥)𝑑𝑥 = ∫

1

0
3𝑥 7

2 𝑑𝑥 = 2
3

𝑉 𝑎𝑟(𝑌 ) = 𝐸[𝑌 2] − (𝐸[𝑌 ])2 = 0.0267

Before approximation, note that,

𝜇 = 𝐸[𝑋] = ∫
ℝ

𝑥𝑓(𝑥)𝑑𝑥 = ∫
1

0
3𝑥3𝑑𝑥 = 3

4

𝐸[𝑋2] = ∫
ℝ

𝑥2𝑓(𝑥)𝑑𝑥 = ∫
1

0
3𝑥4𝑑𝑥 = 3

5
𝜎2 = 𝑉 𝑎𝑟[𝑋] = 𝐸[𝑋2] − (𝐸[𝑋])2 = 0.0375

ℎ(𝜇) = 𝜇 3
4 = (3

4)
3
4 = 0.8059

ℎ′(𝜇) = 3
4 ⋅ 𝜇− 1

4 = 0.8059

ℎ″(𝜇) = −( 3
16) ⋅ 𝜇− 5

4 = −0.2686

𝐸[𝑌 ] = ℎ(𝜇) + ℎ″(𝜇)𝜎2

2 = 0.8009

𝑉 𝑎𝑟(𝑌 ) = [ℎ′(𝜇)]2 ⋅ 𝜎2 = 0.0243

Moment Generating Functions

Definition: The moment generating function (mgf) of RV of X is

𝑀𝑋(𝑡) = 𝐸[𝑒𝑡𝑋]

Remark: 𝑀𝑋(𝑡) is a function of t and not of X.

Example: 𝑋 ∼ 𝐵𝑒𝑟𝑛(𝑝) so that 𝑋 = 1 with probability 𝑝 and 0 with probability 𝑞.

𝑀𝑋(𝑡) = 𝐸[𝑒𝑡𝑋]
= Σ𝑥𝑒𝑡𝑥𝑓(𝑥)
= 𝑒𝑡⋅1 ⋅ 𝑝 + 𝑒𝑡⋅0𝑞

𝑀𝑋(𝑡) = 𝑝 ⋅ 𝑒𝑡 + 𝑞
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Example: If 𝑋 ∼ 𝐸𝑥𝑝(𝜆), then,

𝑀𝑥(𝑡) = 𝐸[𝑒𝑡𝑋]

= ∫
ℝ

𝑒𝑡𝑋𝑓(𝑥)𝑑𝑥 (LOTUS)

= ∫
∞

0
𝑒𝑡𝑋𝜆𝑒−𝜆𝑥𝑑𝑥

= 𝜆 ∫
∞

0
𝑒(𝑡−𝜆)𝑥𝑑𝑥

= 𝜆
𝜆 − 𝑡 𝜆 > 𝑡

Big theorem: Under certain conditions (e.g. 𝑀𝑋(𝑡)) must exist for all 𝑡 ∈ (− ∈, ∈) for some ∈> 0,
we have

𝐸[𝑋𝑡] = 𝑑𝐾

𝑑𝑡𝐾 𝑀𝑋(𝑡)∣
𝑡=0

, 𝑘 = 1, 2, ....

Thus, we can generate the moments of 𝑋 from mgf. Sometimes it’s easier to get moments this way
directly.

Proof:
𝑀𝑋(𝑡) = 𝐸[𝑒𝑡𝑋]

= 𝐸[Σ∞
𝑘=0

(𝑡𝑋)𝐾

𝐾! ] (Mclaurin Series)

= Σ∞
𝑘=0𝐸[(𝑡𝑋)𝐾

𝑘! ]

= 1 + 𝑡𝐸(𝑋) + 𝑡2𝐸[𝑋2]
2 + ....

This implies,
𝑑
𝑑𝑡𝑀𝑋(𝑡) = 𝐸[𝑋] + 𝑡𝐸[𝑋2] + ....

and so,
𝑑
𝑑𝑡𝑀𝑋(𝑡)∣

𝑡=0
= 𝐸[𝑋]

Example: 𝑋 ∼ 𝐵𝑒𝑟𝑛(𝑝). Then 𝑀𝑥(𝑡) = 𝑝𝑒𝑡 + 𝑞 and

𝐸[𝑋] = 𝑑
𝑑𝑡𝑀𝑥(𝑡)∣𝑡=0

= 𝑑
𝑑𝑡(𝑝𝑒𝑡 + 𝑞)∣𝑡=0

= 𝑝𝑒𝑡∣𝑡=0

= 𝑝

In fact, it’s easy to see that 𝐸[𝑋𝑘] = 𝑑
𝑑𝑡𝑘 𝑀𝑥(𝑡)∣𝑡=0 = 𝑝 for all k.
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Example: 𝑋 ∼ 𝐸𝑥𝑝(𝜆). Then 𝑀𝑥(𝑡) = 𝜆
𝜆−𝑡 for 𝜆 > 𝑡. So,

𝐸[𝑋] = 𝑑
𝑑𝑡𝑀𝑥(𝑡)∣𝑡=0 = 𝜆

(𝜆 − 𝑡)2 ∣𝑡=0 = 1
𝜆

𝐸[𝑋2] = 𝑑2

𝑑𝑡2 𝑀𝑥(𝑡)∣𝑡=0 = 2𝜆
(𝜆 − 𝑡)3 ∣𝑡=0 = 2

𝜆2

𝑉 𝑎𝑟[𝑋] = 𝐸[𝑋2] − (𝐸[𝑋])2

Theorem (mgf of linear function of X): Suppose X has mgf 𝑀𝑥(𝑡) and let 𝑌 = 𝑎𝑋 + 𝑏.

𝑀𝑌 (𝑡) = 𝑒𝑡𝑏𝑀𝑋(𝑎𝑡)

Proof:
𝑀𝑌 (𝑡) = 𝐸[𝑒𝑡𝑌 ]

= 𝐸[𝑒𝑡(𝑎𝑥+𝑏)]
= 𝑒𝑡𝑏𝐸[𝑒𝑡(𝑎𝑥)]
= 𝑒𝑡𝑏𝑀𝑋(𝑎𝑡)

Example: Let 𝑋 ∼ 𝐸𝑥𝑝(𝜆) and 𝑌 = 3𝑋 + 2. Then,

𝑀𝑌 (𝑡) = 𝑒2𝑡𝑀𝑋(3𝑡)

= 𝑒2𝑡 𝜆
𝜆 − 3𝑡 if 𝜆 > 3𝑡

Theorem (identifying distribution): In this class, each distribution has a unique mgf.

Proof: Not here!

Example: Suppose that Y has mgf,

𝑀𝑌 (𝑡) = 𝑒2𝑡𝑀𝑋(3𝑡)

= 𝑒2𝑡 𝜆
𝜆 − 3𝑡 if 𝜆 > 3𝑡

Then by previous example and uniqueness of Mgf’s, it must be the case that 𝑌 ∼ 3𝑋 + 2, where
𝑋 ∼ 𝐸𝑥𝑝(𝜆).

3.1.5 Some Probability Inequalities

Theorem: Markov’s Inequality

If X is non-negative random variable and 𝑐 > 0 then 𝑃(𝑋 ≥ 𝑐) ≤ 𝐸[𝑋]/𝐶.
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Proof: Because X is non-negative, we have,

𝐸[𝑋] = ∫
ℝ

𝑥𝑓(𝑥) 𝑑𝑥

= ∫
∞

0
𝑥𝑓(𝑥) 𝑑𝑥

≥ ∫
∞

𝑐
𝑥𝑓(𝑥) 𝑑𝑥

≥ 𝑐 ∫
∞

𝑐
𝑓(𝑥) 𝑑𝑥

= 𝑐 ⋅ 𝑃 (𝑋 ≥ 𝑐)

Theorem: Chebychev’s Inequality

Suppose 𝐸[𝑋] = 𝜇 and 𝑉 𝑎𝑟[𝑋] = 𝜎2. Then, for any 𝑐 > 0, 𝑃(|𝑋 − 𝜇| ≥ 𝑐) ≤ 𝜎2
𝑐2

Proof: By Markov with |𝑋 − 𝜇|2 in place of 𝑋 and 𝑐2 in palce of c, we have,

𝑃(|𝑋 − 𝜇| ≥ 𝑐) = 𝑃 ((𝑋 − 𝜇)2 ≥ 𝑐2)

≤ 𝐸[(𝑋 − 𝜇)2]
𝑐2

{ |𝑋 − 𝜇| ≥ 𝑐 if and only if (𝑋 − 𝜇)2 ≥ 𝑐2 }

= 𝜎2

𝑐2

Remark: Can also write 𝑃(|𝑋 − 𝜇| < 𝑐) ≥ 1 − 𝜎2
𝑐2 . If 𝑐 = 𝑘 ⋅ 𝜎 then 𝑃(|𝑋 − 𝜇| ≥ 𝑘 ⋅ 𝜎) ≤ 1

𝑘2 .

It means if you move further out in terms of standard deviation, the smaller the probability will
be. Chebychev gives a bound on the probability that X deviates from the mean by more than a
constant in terms of constant and the variance. You can always use Chebychev but it’s crude.

Example: 𝑋 ∼ 𝑈𝑛𝑖𝑓(0, 1) 𝑓(𝑥) = 1 for 0 < 𝑥 < 1.

Recall that 𝐸[𝑋] = 1
2 , 𝑉 𝑎𝑟(𝑋) = 1

12 .

Chebychev implies that
𝑃(|𝑋 − 1

2| ≥ 𝑐) ≤ 1
12𝑐2

In particular, for 𝑐 = 1
3 ,

𝑃(|𝑋 − 1
2| ≥ 1

3) ≤ 3
4 (𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑)

Let’s compare the upper bound to exact answer,
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𝑃 (∣𝑥 − 1
2 ∣ ≥ 1

3) = 1 − 𝑃 (∣𝑥 − 1
2 ∣ < 1

3)
= 1 − 𝑃 (−1

3 < 𝑥 − 1
2 < 1

3)
= 1 − 𝑃 (1

6 < 𝑥 < 5
6)

= 1 − ∫
5/6

1/6
𝑓(𝑥) 𝑑𝑥

= 1 − 2
3

= 1
3

So, Chebychev bound of 3
4 is preety high in comparison.

Theorem (Chernoff’s inequality): For any c,

𝑃(𝑋 ≥ 𝐶) ≤ 𝑒−𝑐𝑡𝑀𝑋(𝑡)

Proof: By Markov with 𝑒𝑡𝑥 in place of 𝑋 and 𝑒𝑡𝑐 in place of c, we have,

𝑃(𝑋 ≥ 𝐶) = 𝑃(𝑒𝑡𝑥 ≥ 𝑒𝑡𝑐)

= 𝑒−𝑡𝑐𝐸[𝑒𝑡𝑋] from Markov’s inequality, 𝑃(𝑌 ≥ 𝑎) ≤ 𝐸[𝑌 ]
𝑎

= 𝑒−𝑐𝑡𝑀𝑋(𝑡)

Example: Suppose 𝑋 has the standard normal distribution with pdf 𝜙(𝑥) = 1√
2𝜋𝑒− 𝑥2

2 for 𝑥 ∈ ℝ.
It is easy to show that mgf of standard normal is

𝑀𝑥(𝑡) = 𝐸[𝑒𝑡𝑋]

= ∫
𝑅

𝑒𝑡𝑥𝜙(𝑥)𝑑𝑥

= 𝑒 𝑡2
2

Then using Chernoff with 𝑡 = 𝑐 immediately yields the tail probability.

𝑃(𝑋 ≥ 𝐶) ≤ 𝑒−𝐶2𝑀𝑋(𝑐)
= 𝑒− 𝑐2

2

3.1.6 Functions of Random Variable

Problem: You have RV 𝑋 and you know its pmf/pdf 𝑓(𝑥).
Define 𝑌 = ℎ(𝑥) (Some function of X). Find 𝑔(𝑦) the pmf/pdf of 𝑋.

Remark: Recall that LOTUS gave us results for 𝐸[ℎ(𝑥)]. But this is much more general that
LOTUS, because we are going to get entire distribution of ℎ(𝑋).
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Discrete Case: 𝑋 discrete implies 𝑌 discrete.

𝑔(𝑦) = 𝑃(𝑌 = 𝑦)
= 𝑃(ℎ(𝑋) = 𝑦)
= 𝑃(𝑥|ℎ(𝑥) = 𝑦) (Probability of x’s such thatℎ(𝑥) = 𝑦)
= Σ𝑥|ℎ(𝑥)=𝑦𝑓(𝑥)

Example: 𝑋 is the number of H’s in 2 coin tosses. We want the pmf of 𝑌 = ℎ(𝑥) = 𝑥3 − 𝑥.

{TT, TH, HT, HH}

𝑓(𝑥) = 𝑃(𝑋 = 𝑥)
𝑥 0 1 2

𝑓(𝑥) = 𝑃(𝑋 = 𝑥) 1
4

1
2

1
2

𝑦 = 𝑥3 − 𝑥 0 0 6

3 values of x map into 2 values of y i.e. 0 & 6.

𝑔(0) = 𝑃(𝑌 = 0) = 𝑃(𝑋 = 0𝑜𝑟1) = 1
4 + 1

2 = 3
4

𝑔(6) = 𝑃(𝑌 = 6) = 𝑃(𝑋 = 2) = 1
4

𝑔(𝑦) =
⎧{
⎨{⎩

3
4 if 𝑦 = 0
1
4 if 𝑦 = 6

Example: X is discrete with

𝑓(𝑥) =

⎧{{{
⎨{{{⎩

1
8 if 𝑥 = −1
3
8 if 𝑥 = 0
1
3 if 𝑥 = 1
1
6 if 𝑥 = 2

Let 𝑌 = 𝑋2 (so Y can equal to 0,1 or 4).

𝑔(𝑦) =
⎧{{
⎨{{⎩

𝑃(𝑌 = 0) = 𝑓(0) = 3
8

𝑃(𝑌 = 1) = 𝑓(1) + 𝑓(−1) = 1
8 + 1

3 = 11
24

𝑃(𝑌 = 4) = 𝑓(2) = 1
6

Continuous Case: X is continuous imples Y can be continuous/discrete.

Example: 𝑌 = 𝑋2 (clearly continuous)
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Example:

𝑌 =
⎧{
⎨{⎩

0 if 𝑋 < 0
1 if 𝑋 ≥ 0

is not continuous

Method: Compute G(y), the cdf of Y,

𝐺(𝑦) = 𝑃(𝑌 ≤ 𝑦) = 𝑃(ℎ(𝑥) ≤ 𝑦)

= ∫
{𝑥|ℎ(𝑥)≤𝑦}

𝑓(𝑥)𝑑𝑥

If 𝐺(𝑦) is continuous, construct the pdf 𝑔(𝑦) by differentiating.

Example: 𝑓(𝑥) = |𝑥|, −1 ≤ 𝑥 ≤ 1. Find the pdf of RV 𝑌 = ℎ(𝑋) = 𝑥2.

𝐺(𝑦) = 𝑃 (𝑌 ≤ 𝑦)

= 𝑃 (𝑋2 ≤ 𝑦) =
⎧{{
⎨{{⎩

0 if 𝑦 ≤ 0
1 if 𝑦 ≥ 1
(∗) if 0 < 𝑦 < 1

𝑥2 must be between 0 and 1

where,
∗ = 𝑃(−√𝑦 ≤ 𝑋 ≤ √𝑦)

= ∫
√𝑦

−√𝑦
|𝑥|𝑑𝑥

= 𝑦

Thus,

𝐺(𝑦) =
⎧{{
⎨{{⎩

0 if 𝑦 ≤ 0
1 if 𝑦 ≥ 1
𝑦 if 0 < 𝑦 < 1

This implies,

𝑔(𝑦) = 𝐺′(𝑦) =
⎧{
⎨{⎩

0 if 𝑦 < 0 and 𝑦 ≥ 1
1 if 0 < 𝑦 < 1

This means 𝑌 has the 𝑈𝑛𝑖𝑓(0, 1) distribution.
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Explanation

Since, 𝑌 = 𝑋2 so, 0 ≤ 𝑌 ≤ 1. The cdf is determined as
* If 𝑦 ≤ 0 then 𝑃(𝑋2 ≤ 𝑦) = 0 because 𝑋2 is non-negative.
* If 𝑦 ≥ 0 then 𝑃(𝑋2 ≤ 𝑦) = 1 because 𝑋2 is at most 1.
* If 0 < 𝑦 < 1, the 𝑃(−√𝑦 ≤ 𝑋 ≤ √𝑦)

Example: Suppose 𝑈 ∼ 𝑈𝑛𝑖𝑓(0, 1) Find the pdf of 𝑌 = −𝑙𝑛(1 − 𝑈).

𝐺(𝑦) = 𝑃(𝑌 ≤ 𝑦)
= 𝑃(−𝑙𝑛(1 − 𝑈) ≤ 𝑦)
= 𝑃(1 − 𝑈 ≤ 𝑒−𝑦)

= ∫
1−𝑒−𝑦

0
𝑓(𝑢)𝑑𝑢

= 1 − 𝑒−𝑦 (since f(u) = 1)

𝑔(𝑦) = 𝐺′(𝑦) = 𝑒−𝑦, 𝑦 > 0

This implies 𝑌 ∼ 𝐸𝑥𝑝(𝜆 = 1).

𝐺(𝑦) =
⎧{
⎨{⎩

0 if 𝑦 < 0
1 − 𝑒−𝑦 if 𝑦 ≥ 0

For 𝑦 < 0, 𝑃(𝑌 ≤ 𝑦) = 0 because 𝑌 = −𝑙𝑛(1 − 𝑈) is non-negative.

3.1.7 Inverse Transform Theorem/Probabiity Integral Transform

Suppose X is a continuous random variable having cdf 𝐹(𝑥). Then the random variable 𝐹(𝑥) ∼
𝑈𝑛𝑖𝑓(0, 1).

Proof: Let 𝑌 = 𝐹(𝑥). The cdf of 𝑌 is

𝐺(𝑦) = 𝑃(𝑌 ≤ 𝑦)
= 𝑃(𝐹(𝑋) ≤ 𝑦)
= 𝑃(𝑋 ≤ 𝐹 −1(𝑦))
= 𝐹(𝐹 −1(𝑦))
= 𝑦

{cdf is monotonically increasing}

Monotonically increasing means as input increases, output never decreases. Example: 𝑓(𝑥) =
𝑥2, 𝑥 ≥ 0.

Remark: This is a great theorem since it applies to all continuous RVs X.
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Corollary: 𝑋 = 𝐹 −1(𝑈) so that you can plug 𝑈𝑛𝑖𝑓(0, 1) RV into the inverse cdf to generate a
realization of RV having X’s distribution.

Method: Set 𝐹(𝑋) = 𝑈 and solve 𝑋 = 𝐹 −1(𝑈) to generate X.

Figure 2: Inverse function

Example: Suppose 𝑋 is 𝐸𝑥𝑝(𝜆) so that it has cdf 𝐹(𝑥) = 1 − 𝑒−𝜆𝑥. Similar to previous example,
set 𝐹(𝑥) = 1 − 𝑒−𝜆𝑥 = 𝑈 and generate an 𝐸𝑥𝑝(𝜆) RV by solving for,

Remark: If you’d like to generate a nice, beautiful 𝐸𝑥𝑝(𝜆) pdf on a computer then

a. Generate 10000 𝑈𝑛𝑖𝑓(0, 1). Use rand function in excel or unifrnd in Matlab).

b. Plug those 10000 into equation for X above and

c. Plot the histogram of X.

Another way to find pdf of a function of a continuous RV

Suppose that 𝑌 = ℎ(𝑥) is a monotonic function of a continuous RV X having pdf 𝑓(𝑥) and cdf
𝐹(𝑥). Let’s get the pdf 𝑔(𝑦) of 𝑌 directly.

𝑔(𝑦) = 𝑑
𝑑𝑦𝐺(𝑦)

= 𝑑
𝑑𝑦𝑃(𝑌 ≤ 𝑦)

= 𝑑
𝑑𝑦𝑃(𝑋 ≤ ℎ−1(𝑦)) (h(x) is monotonic)

= 𝑑
𝑑𝑦𝐹(ℎ−1(𝑦))

= 𝑓(ℎ−1(𝑦))∣𝑑ℎ−1(𝑦)
𝑑𝑦 ∣ (chain rule)

Example: Suppose that 𝑓(𝑥) = 3𝑥2, 0 < 𝑥 < 1. Let 𝑌 = ℎ(𝑥) = 𝑥1/2 which is monotone
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increasing.

𝑔(𝑦) = = 𝑓(ℎ−1(𝑦))∣𝑑ℎ−1(𝑦)
𝑑𝑦 ∣

= 𝑓(𝑦2)∣𝑑(𝑦2)
𝑑𝑦 ∣

= 3𝑦42𝑦
= 6𝑦5, 0 < 𝑦 < 1

Explanation

𝑌 = 𝑋1/2

𝑋 = 𝑌 2

ℎ−1(𝑦) = 𝑋 = 𝑌 2 ℎ−1(𝑦)is inverse function of h(x) expressed in terms of y

𝑓(ℎ−1(𝑦)) = 𝑓(𝑦2) = 3𝑦4

Theorem (why LOTUS works): Let us assume h(.) is monotonically increasing. Then

𝐸[ℎ(𝑥)] = 𝐸[𝑌 ]

= ∫
𝑅

𝑦𝑓(ℎ−1(𝑦))∣𝑑ℎ−1(𝑦)
𝑑𝑦 ∣𝑑𝑦

= ∫
𝑅

ℎ(𝑥)𝑓(𝑥)∣𝑑𝑥
𝑑𝑦 ∣𝑑𝑦

= ∫
𝑅

ℎ(𝑥)𝑓(𝑥)𝑑𝑥
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