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1. Differential Equation

A differential equation of simple form 𝑑𝑦
𝑑𝑡 + 𝑃(𝑡)𝑦 = 𝑓(𝑡) explains how the change in one variable

(independent variable) affects the other dependent variable. It shows the direction of movement as
well as the magnitude of the movement of dependent variable with respect the indpendent variable.
It can be (i) ordinary differential equation that has 1 independent variable, (ii) partial differential
equation that has at least 2 independent variables.

1.1 Solution of differential equation

a. General Solution includes all the possible solutions that typically includes arbitrary constant.
For eg. 𝑦(𝑡) = 𝑡3 + 𝑐 is a general solution.
b. Particular Solution includes the solution without arbitrary constant. Consider the intial
condition:

𝑦(𝑡0) = 0

𝑐 = 0

So,
𝑦(𝑡) = 𝑡3
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Figure 1: Plot of 𝑦 = 𝑡3
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1.2 Order of Differential Equation

The order of the differential equation is the highest derivative of the dependent variable that exists
in the equation.

𝑑𝑛𝑦
𝑑𝑡 = 𝑓(𝑡, 𝑦1, 𝑦2, ...., 𝑦𝑛−1, 𝑦𝑛)

is the 𝑛 − 𝑡ℎ order differential equation.
First order differential equation is

𝑑𝑦
𝑑𝑡 = 𝑓(𝑡, 𝑦)

1.3 Directional Fields

Directional field also known as slope field is the graphical representation of the solutions to the first
order differential equation. Consider the differential equation,

𝑑𝑦
𝑑𝑡 = (𝑦 − 2)(𝑦 + 1)(1 − 𝑦)2

To determine the directional field, we equate the above equation equals to 0,

(𝑦 − 2)(𝑦 + 1)(1 − 𝑦)2 = 0

So, 𝑦 = 2,±1. The graph is divided into four regions i.e. 𝑦 < −1, −1 < 𝑦 < 1, 1 < 𝑦 < 2 and 𝑦 > 2.
For, 𝑦 < −1, 𝑑𝑦

𝑑𝑡 = 36 when 𝑦 = −2,
For, −1 < 𝑦 < 1, 𝑑𝑦

𝑑𝑡 = −1.05 when 𝑦 = −0.9
For, 1 < 𝑦 < 2, 𝑑𝑦

𝑑𝑡 = −0.0189 when 𝑦 = 1.1
For, 𝑦 > 2, 𝑑𝑦

𝑑𝑡 = 0.3751 when 𝑦 = 2.1
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Figure 2: Directional field of 𝑑𝑦
𝑑𝑡 = (𝑦 − 2)(𝑦 + 1)(1 − 𝑦)2
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1.4 Concavity

The graph of 𝑓(𝑥) is concave up if 𝑓 ′(𝑥) is increasing i.e. 𝑓 ′ > 0 and concave down if 𝑓 ′(𝑥) is
decreasing i.e. 𝑓 ′(𝑥) < 0.
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(b) Concave function (Concave downward)

1 Separable equations

Differential equation is separable if 𝑦′ = 𝑓(𝑡)𝑔(𝑦).

Example:
𝑑𝑦
𝑑𝑡 = 3𝑡2(1 + 𝑦)

1
1 + 𝑦𝑑𝑦 = 3𝑡2𝑑𝑡 (1)

∫ 1
1 + 𝑦𝑑𝑦 = ∫3𝑡2𝑑𝑡

𝑙𝑛|1 + 𝑦| = 𝑡3 + 𝑐

𝑒𝑙𝑛|1+𝑦| = 𝑒𝑡3+𝑐
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|1 + 𝑦| = 𝑒𝑡3 .𝑒𝑐

1 + 𝑦 = ±𝑒𝑐𝑒𝑡3 (2)

where 𝑒𝑐 > 0 in equation (1).

𝑦 = 𝐾𝑒𝑡3

𝑦 = −1 +𝐾𝑒𝑡3

𝑦 = −1 + 𝐶𝑒𝑡3 (3)

In equation (3),

a. If 𝐶 = 0, 𝑦 = −1 is equilibrium solution.

b. If 𝐶 ≠ 0, it gives all other possible solutions.

Example:

𝑑𝑦
𝑑𝑡 = 3𝑡2 + 1

1 + 2𝑦

and 𝑦(0) = 1

The equation is in the form 𝑦′ = 𝑓(𝑡)𝑔(𝑦). So the equation can be separated.

Does the equation has equilibrium solution?

Set, 𝑔(𝑦) = 0, ⟹ 1
1+2𝑦 = 0. So, no equilibrium solution.

Now,

∫(1 + 2𝑦)𝑑𝑦 = ∫(3𝑡2 + 1)𝑑𝑡

𝑦 + 𝑦2 = 𝑡3 + 𝑡 + 𝑐 (1)

Put 𝑦(0) = 1, then 𝐶 = 2. So,

𝑦 + 𝑦2 = 𝑡3 + 𝑡 + 2

7



(𝑦2 + 𝑦) − (𝑡3 + 𝑡 + 2) = 0 (2)

Equation (2) is in the form of 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, where 𝑎 = 1, 𝑏 = 1 and 𝑐 = −(𝑡3 + 𝑡 + 2).

𝑦 = −1 ±√1 + 4(𝑡3 + 𝑡 + 2)
2

y2 + y − (t3 + t + 2) = 0
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Figure 3: Plot of 𝑦2 + 𝑦 − (𝑡3 + 𝑡 + 2) = 0

1.6 Picard’s Theorem

For 𝑦′ = 𝑓(𝑡, 𝑦) with 𝑦(𝑡0) = 𝑦0 to have solution:

• Condition I: f(t,y) should be continuous function1 in a neighborhood of 𝑡0, 𝑦0.
• Condition II: The solution is unique if 𝛿𝑓

𝛿𝑦 is also continuous in neighbourhood of this initial
condition 𝑡0 and 𝑦0.

1A function 𝑓(𝑥) is continous at 𝑥 = 𝑎 if a. 𝑓(𝑎) is defined, b. lim𝑥→𝑎 𝑓(𝑥) exists and c. lim𝑥→𝑎 𝑓(𝑥) = 𝑓(𝑎)
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1.7 Linearity vs Non-linearity

A linear differential equation is in the form 𝑦′+𝑝(𝑡)𝑦 = 𝑓(𝑡) which is a first order linear differential
equation. Non-linear differential equation can be 𝑦′𝑦 = 𝑐𝑜𝑠𝑡. Properties of linear equations are:

• Superposition principle: If 𝑦1 and 𝑦2 are homogeneous solutions, their linear combinations
𝑐1𝑦1 + 𝑐2𝑦3 is also homogeneous.

• Non homogeneous principle: General solution for non-homogeneous equation is 𝑦(𝑡) =
𝑦𝑃 + 𝑦𝐻 where 𝑦𝑃 is solution for non-homogeneous equation and 𝑦𝐻 is solution for homoge-
neous equation.
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2. First order Differential Equation

2.1 First order linear non-homogeneous Equation: Variation of Parameters

Consider the following first order ODE:

𝑦′ + 𝑝(𝑡)𝑦 = 𝑓(𝑡) (1)

For equation (1),
𝑦𝐻 = 𝐶𝑒−∫𝑝(𝑡)𝑑𝑡 (2)

𝑦𝑝 = 𝑣𝑦𝐻 (3)

Can 𝑣 be constant?
No, 𝑣 can’t be constant because if 𝑣 is constant then 𝑦𝑝 is scalar multiplicative of 𝑦𝐻. This won’t
solve the non-homogeneous equation. 𝑣 is non-constant function of 𝑡 i.e. 𝑣(𝑡).

From equation (3),
𝑦′𝑝 = (𝑣𝑦𝐻)′ ⟶ 𝑣′𝑦𝐻 + 𝑣𝑦′𝐻

So, in equation (1),
𝑣′𝑦𝐻 + 𝑣𝑦′𝐻 + 𝑝(𝑡)𝑣𝑦𝐻 = 𝑓(𝑡)

𝑣′𝑦𝐻 + 𝑣[𝑦′𝐻 + 𝑝(𝑡)𝑦𝐻] = 𝑓(𝑡)

where 𝑦′𝐻 + 𝑝(𝑡)𝑦𝐻 = 0
𝑣′𝑦𝐻 = 𝑓(𝑡)

𝑣′ = 𝑓(𝑡)
𝑦𝐻

𝑣 = ∫ 𝑓(𝑡)
𝑦𝐻

𝑑𝑡 (4)

Equation (4) gives 𝑣.

Example:
𝑦′ + 1

1 + 𝑡𝑦 = 2

𝑦(0) = 0, 𝑡 ≥ 0

𝑦𝐻 = 𝐶𝑒−∫ 1
1+𝑡𝑑𝑡

𝑦𝐻 = 𝐶𝑒−𝑙𝑛|1+𝑡|

𝑦𝐻 = 𝐶𝑒𝑙𝑛|1+𝑡|−1

𝑦𝐻 = 𝐶|1 + 𝑡|−1
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𝑦𝐻 = 𝐶
1 + 𝑡 (1)

Here we only take +ve sign because 𝑡 ≥ 0.

𝑦𝑃 = 𝑣𝑦𝐻

𝑣′ = 𝑓
𝑦𝐻

𝑣′ = 𝑓
1

1+𝑡

𝑣′ = 2(1 + 𝑡)

where 𝑓 = 2
𝑣 = ∫2(1 + 𝑡)𝑑𝑡

𝑣 = 2𝑡 + 𝑡2 + 𝑐 (2)

Now,
𝑦𝑃 = (2𝑡 + 𝑡2 + 𝑐)𝑦𝐻

𝑦𝑃 = (𝑡2 + 2𝑡 + 𝑐)
1 + 𝑡 (3)

Here, we don’t need to write 𝑐 because we will get the constant from 𝑦𝐻. General Solution is

𝑦 = 𝑦𝑃 + 𝑦𝐻

𝑦 = 2𝑡 + 𝑡2
𝑡 + 1 + 𝐶

𝑡 + 1 (4)

We know, 𝑦(0) = 0 so,

0 = 2 ∗ 0 + 02
0 + 1 + 𝑐

0 + 1
𝑐 = 0

Hence,

𝑦 = 2𝑡 + 𝑡2
𝑡 + 1 (5)

Eqn (5) is case when 𝑡 ≠ −1.
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Figure 4: Plot of 𝑦 = (2𝑡 + 𝑡2)/(𝑡 + 1)
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2.2 First order linear non-homogeneous equation: Integrating Factors

Consider the following
𝑦′ + 𝑝(𝑡)𝑦 = 𝑓(𝑡) (1)

Multiply equation (1) by 𝜇,
𝜇𝑦′ + 𝑝(𝑡)𝑦𝜇 = 𝑓(𝑡)𝜇

Assume, 𝜇𝑝(𝑡) = 𝜇′

Now,
𝜇𝑦′ + 𝜇′𝑦 = 𝜇𝑓(𝑡)

(𝜇𝑦)′ = 𝜇𝑓(𝑡)

∫ (𝜇𝑦)′𝑑𝑡 = ∫𝜇𝑓(𝑡)𝑑𝑡

𝜇𝑦 + 𝑐 = ∫𝜇𝑓(𝑡)𝑑𝑡

𝑦 = ∫𝜇𝑓(𝑡)𝑑𝑡 − 𝑐
𝜇 (2)

In eqn (2), since c is unknown constant, we change the sign -ve to +ve.

𝑦 = ∫𝜇𝑓(𝑡)𝑑𝑡 + 𝑐
𝜇 (3)

From our assumption,
𝜇𝑝(𝑡) = 𝜇′ ⟶ 𝑝(𝑡) = 𝜇′

𝜇
On right hand side, it is simply the natural log of 𝜇. So,

𝑝(𝑡) = (𝑙𝑛𝜇)′

∫𝑝(𝑡)𝑑𝑡 = ∫(𝑙𝑛𝜇)′𝑑𝑡

∫𝑝(𝑡)𝑑𝑡 + 𝑘 = ln𝜇

𝜇 = 𝑒∫𝑝(𝑡)𝑑𝑡+𝑘

𝜇 = 𝑒𝑘𝑒∫𝑝(𝑡)𝑑𝑡

𝜇 = 𝐾𝑒∫𝑝(𝑡)𝑑𝑡 (4)
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where 𝐾 = 𝑒𝑘.
If we set the value of 𝜇 in equation 3, we get y,

𝑦 = ∫𝐾𝑒∫𝑝(𝑡)𝑑𝑡𝑓(𝑡)𝑑𝑡 + 𝑐
𝐾𝑒∫𝑝(𝑡)𝑑𝑡 (5)

Example
𝑦′ + 1

𝑡 + 1 = 2

and 𝑦(0) = 0, 𝑡 ≥ 0
We Know,

𝜇 = 𝑒∫𝑝(𝑡)𝑑𝑡

𝜇 = 𝑒∫ 1
1+𝑡𝑑𝑡

𝜇 = 𝑒𝑙𝑛|1+𝑡|

𝜇 = |1 + 𝑡|

𝜇 = 𝑡 + 1

We only take positive sign because 𝑡 ≥ 0.

(𝜇𝑦)′ = 𝜇𝑓(𝑡)

(𝜇𝑦)′ = 2𝜇

[(1 + 𝑡)𝑦]′ = 2(1 + 𝑡)

∫ [(1 + 𝑡)𝑦]′𝑑𝑡 = ∫2(1 + 𝑡)𝑑𝑡

(1 + 𝑡)𝑦 = 𝑡2 + 2𝑡 + 𝑐

𝑦 = 𝑡2 + 2𝑡
𝑡 + 1 + 𝑐

𝑡 + 1 (1)

Since, 𝑦(0) = 0 so, 𝑐 = 0 in equation (1). Then,

𝑦(𝑡) = 𝑡2 + 2𝑡
𝑡 + 1 (2)
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3. Second order Differential Equation

General form of Second order differential equation is in the form

𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = 𝑓(𝑡)

3.1 Homogenous equation with constant coefficient

To find 𝑦𝐻 = 𝐵𝑎𝑠𝑖𝑠 𝑦1, 𝑦2 where 𝑦1, 𝑦2 are two linearly independent functions.

𝑦(𝑡) = 𝑒𝜆𝑡

𝑦′(𝑡) = 𝜆𝑒𝜆𝑡

𝑦″(𝑡) = 𝜆2𝑒𝜆𝑡

Then,
𝑎𝜆2𝑒𝜆𝑡 + 𝑏𝜆𝑒𝜆𝑡 + 𝑐𝑒𝜆𝑡 = 0

𝑒𝜆𝑡(𝑎𝜆2 + 𝑏𝜆 + 𝑐) = 0

Since, 𝑒𝜆𝑡 ≠ 0 so,
𝑎𝜆2 + 𝑏𝜆 + 𝑐 = 0

𝜆1,2 = −𝑏 ±
√
𝑏2 − 4𝑎𝑐
2𝑎

• 𝑏2 − 4𝑎𝑐 > 0 ⟹ Real distinct roots
• 𝑏2 − 4𝑎𝑐 = 0 ⟹ Repeated roots
• 𝑏2 − 4𝑎𝑐 < 0 ⟹ Complex Roots

Example:
𝑦" + 5𝑦′ + 6𝑦 = 0

Consider 𝑦(𝑡) = 𝑒𝜆𝑡, then,
𝜆2 + 5𝜆 + 6 = 0

𝜆1,2 = −5 ±
√
25 − 4 ∗ 6
2

𝜆1,2 = −3,−2

So, 𝑦1 = 𝑒−3𝑡 and 𝑦2 = 𝑒−2𝑡

𝑦𝐻 = span (𝑦1, 𝑦2) for which linear independency should be treated
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Example:
𝑦″ + 4𝑦′ + 4𝑦 = 0

𝜆2 + 4𝜆 + 4 = 0

𝜆1,2 = −4 ±
√
42 − 4 ∗ 4
2

𝜆1,2 = −2

It is a case of Repeated Real roots.

𝑦1 = 𝑒−2𝑡 and 𝑦2 = ?

For repeated real roots, we us variation of parameter

𝑦2 = 𝑣𝑦1 (1)

Can v be constant?

V is not constant. We want to generate 𝑦𝐻 that is coming from linearly independent solution so v
is function of t i.e. 𝑣(𝑡).

𝑦′2 = 𝑣′𝑦1 + 𝑦′1𝑣

𝑦″2 = 𝑣′𝑦1 + 𝑦′1𝑣′ + 𝑦1"𝑣 + 𝑣′𝑦′1
𝑦1 = 𝑒−2𝑡, 𝑦′1 = −2𝑒−2𝑡 and 𝑦″1 = 4𝑒−2𝑡 So,

𝑦″ + 4𝑦′ + 4𝑦 = 0

𝑣″𝑒−2𝑡 − 2𝑣′𝑒−2𝑡 + 4𝑣𝑒−2𝑡 − 2𝑣′𝑒−2𝑡 + 4(𝑣′𝑒−2𝑡 − 2𝑣𝑒−2𝑡) + 4𝑣𝑒−2𝑡 = 0

𝑣″𝑒−2𝑡 = 0

Since, 𝑒−2𝑡 ≠ 0, 𝑣″ = 0. If 𝑣 = 𝑎𝑡 + 𝑏, 𝑦2 = 𝑣𝑦1 = (𝑎𝑡 + 𝑏)𝑦1. Here 𝑏𝑦1 gives dependent piece so, we
don’t need b. For a, when span of 𝑦1 and 𝑦2 are taken all the linear combination of 𝑦1 and 𝑦2 are
handled by constant. So, 𝑣(𝑡) = 𝑡.

Example:
𝑦″ + 2𝑦′ + 4𝑦 = 0

𝜆2 + 2𝜆 + 4 = 0

𝜆1,2 = −2 ±
√
4 − 4 ∗ 4
2

𝜆1,2 = −1 ±
√
3𝑖
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𝑦(𝑡) = 𝐶1𝑒(−1−
√
3𝑖)𝑡 +𝐶2𝑒(−1+

√
3𝑖)𝑡

𝑦(𝑡) = 𝐶1𝑒−𝑡𝑒−
√
3𝑖𝑡 +𝐶2𝑒−𝑡𝑒

√
3𝑖𝑡

θ
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Figure 5: Complex Exponential Function 𝑒𝑖𝜃

𝑦(𝑡) = 𝑒−𝑡(𝐶1𝑒−
√
3𝑖𝑡 +𝐶2𝑒

√
3𝑖𝑡)

𝑦(𝑡) = 𝑒−𝑡[𝐶1(𝑐𝑜𝑠(−
√
3𝑡) + 𝑠𝑖𝑛(−

√
3𝑡)) + 𝐶2(𝑐𝑜𝑠(

√
3𝑡) + 𝑠𝑖𝑛(

√
3𝑡))]

𝑦(𝑡) = 𝑒−𝑡[𝐶1(𝑐𝑜𝑠(
√
3𝑡) − 𝑠𝑖𝑛(

√
3𝑡)) + 𝐶2(𝑐𝑜𝑠(

√
3𝑡) + 𝑠𝑖𝑛(

√
3𝑡))]

𝑦(𝑡) = 𝑒−𝑡[𝐶1𝑐𝑜𝑠(
√
3𝑡) − 𝐶1𝑠𝑖𝑛(

√
3𝑡)) + 𝐶2𝑐𝑜𝑠(

√
3𝑡) + 𝐶2𝑠𝑖𝑛(

√
3𝑡)]

𝑦(𝑡) = 𝑒−𝑡[(𝐶1 +𝐶2)𝑐𝑜𝑠(
√
3𝑡) + (𝐶2 −𝐶1)𝑠𝑖𝑛(

√
3𝑡)]

𝑦(𝑡) = 𝑒−𝑡[𝐶3𝑐𝑜𝑠(
√
3𝑡) + 𝐶4𝑠𝑖𝑛(

√
3𝑡)] (2)
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y = e−t(C3cos( 3t) + C4sin( 3t))
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Figure 6: Plot of 𝑦(𝑡) = 𝑒−𝑡(𝐶3𝑐𝑜𝑠(𝑠𝑞𝑟𝑡(3)𝑡) + 𝐶4𝑠𝑖𝑛(𝑠𝑞𝑟𝑡(3)𝑡))
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Additinal note: Linear Independency of Functions

Theorem: A set of functions {𝑓1, 𝑓2, ........., 𝑓𝑛} is linearly independent set if there is no linear
combination functions i.e = 0 for all 𝑡 ∈ 𝐼 . {𝑓1, 𝑓2, ........., 𝑓𝑛} is linearly dependent such that
𝑐1𝑓1 + .......... + 𝑐𝑛𝑓𝑛 = 0 i.e. satisfy non-trivial solution for some 𝑡 ∈ 𝐼 .

Taking derivative, 𝑐1𝑓 ′
𝑛 + ............. + 𝑐𝑛𝑓 ′

𝑛 = 0 which indicates that some of the functions will
vanish i.e. some will be equal to 0. But as long as O is included in function set, it will be linearly
dependent. When we derivative a function equal to 0, the linear dependency is still preserved for
some 𝑡 ∈ 𝐼 .

𝑐1𝑓𝑛−1
1 + ............. + 𝑐𝑛𝑓𝑛−1

𝑛 = 0

gives us non-trivial expression assuming 𝑐1, ......, 𝑐𝑛 ≠ 0 or 𝑓1, ........., 𝑓𝑛 ≠ 0.

If we take derivative then 𝑐1𝑓 ′
1 + ............ + 𝑐𝑛𝑓 ′

𝑛 = 0. Some of the functions will vanish i.e. some
will be equal to 0. But as long as 0 is included in function set, it will be linearly dependent i.e.
{𝑓1, ..........., 𝑓𝑛, 0}. If we take derivative of a function equal to 0, the linear dependency is still
preserved for some 𝑡 ∈ 𝐼 i.e. 𝑐1𝑓 (𝑛−1)

1 + .......... + 𝑐𝑛𝑓 (𝑛−1)
𝑛 = 0 gives us non-trivial expression

assuming 𝑐1, ......., 𝑐𝑛 ≠ 0 or 𝑓1, ......., 𝑓𝑛 ≠ 0.

⎡
⎢
⎢
⎢
⎣

𝑓1 … 𝑓𝑛
𝑓 ′
1 … 𝑓 ′

𝑛
⋮ ⋮ ⋮

𝑓 (𝑛−1)
1 … 𝑓 (𝑛−1)

𝑛

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑐1
⋮
⋮
𝑐𝑛

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0
⋮
⋮
0

⎤
⎥
⎥
⎥
⎦

For any linearly dependent set, derivatives up to any degree will also be linearly dependent.

If {𝑓1, ..........., 𝑓𝑛} is linearly dependent set then Wronskian of {𝑓1, ........, 𝑓𝑛} is equal to 0 i.e.
𝑊[𝑓1, ........., 𝑓𝑛] = 0. So,

∣
∣
∣
∣
∣

𝑓1 … 𝑓𝑛
𝑓 ′
1 … 𝑓 ′

𝑛
⋮ ⋮ ⋮

𝑓 (𝑛−1)
1 … 𝑓 (𝑛−1)

𝑛

∣
∣
∣
∣
∣

= 0

Theorem: If {𝑦1, ......., 𝑦𝑛} are solutions to 𝑛𝑡ℎ order linear differential equation and
𝑊[𝑦1, ........, 𝑦𝑛] = 0 for some 𝑡 ∈ 𝐼 then {𝑦1, ........, 𝑦𝑛} solutions are linearly dependent.
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3.2 Non-Homogenous Equation linear Differential Equation

It is of form

𝑎𝑦″ + 𝑏𝑦′ + 𝑐𝑦 = 𝑓(𝑡)

It can be solved using undertermined coefficient or variation of parameters method. Un-
dertermined coefficients can be used to solve (i) higher order differential equations, (ii) differential
equation with constant coefficients, (iii) f(t) when it is polynomials, exponentials, sine and cosine
functions. Variation of paraments can be used for (i) 2nd order differential equations, (ii) any
coefficients: variable or constant, (iii) for any f(t).

Using Variation of parameters
𝑦″ + 𝑝(𝑡)𝑦′ + 𝑞(𝑡)𝑦 = 𝑓(𝑡)

We need to find basis functions that generate 𝑦𝐻. Let’s say they are 𝑦1 and 𝑦2 so, 𝑦𝐻 = 𝑦1, 𝑦2
where 𝑦1 and 𝑦2 are linearly independent. Hence, 𝑊[𝑦1, 𝑦2] ≠ 0.

𝑦𝑝 = 𝑣1𝑦1 + 𝑣2𝑦2

where 𝑣1 and 𝑣2 are functions of t. At least one should be non constant function.

𝑣′1 = −𝑦2𝑓
𝑊[𝑦1, 𝑦2]

𝑣′2 = 𝑦1𝑓
𝑊[𝑦1, 𝑦2]

Example:
𝑦″ − 𝑦′ − 2𝑦 = 5𝑒2𝑡

Let’s find 𝑦𝐻 first. The homogeneous equation is

𝑦″ − 𝑦′ − 2𝑦 = 0

Assuming, 𝑦(𝑡) = 𝑒𝜆𝑡 we get,
𝜆2 − 𝜆 − 2 = 0

So, 𝜆1 = 2 and 𝜆2 = −1

𝑦𝐻 = 𝐶1𝑒2𝑡 +𝐶2𝑒−𝑡 (1)

For particular solution 𝑦𝑝, assume 𝑦𝑝 = 𝐴𝑡𝑒2𝑡.
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𝑦′ = 𝐴𝑒2𝑡 + 2𝐴𝑡𝑒2𝑡

𝑦″ = 2𝐴𝑒2𝑡 + 2𝐴𝑒2𝑡 + 4𝐴𝑡𝑒2𝑡 = 4𝐴𝑒2𝑡 + 4𝐴𝑡𝑒2𝑡

So,
4𝐴𝑒2𝑡 + 4𝐴𝑡𝑒2𝑡 − (𝐴𝑒2𝑡 + 2𝐴𝑡𝑒2𝑡) − 2𝐴𝑡𝑒2𝑡 = 5𝑒2𝑡

3𝐴 = 5

𝐴 = 5
3

So,

𝑦𝑝 = 5𝑡𝑒2𝑡
3 (2)

𝑦 = 5𝑡𝑒2𝑡
3 + 𝐶1𝑒2𝑡 +𝐶2𝑒−𝑡 (3)

Equation (3) is the solution to the differential equation.
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Figure 7: Plot of 𝑦(𝑡) = (5𝑡𝑒2𝑡)/3 + 𝐶1𝑒2𝑡 +𝐶2𝑒−𝑡

Example:
𝑦″ − 2𝑦′ + 𝑦 = 𝑒𝑡

1 + 𝑡2 (1)

For 𝑦𝐻, assume 𝑦(𝑡) = 𝑒𝜆𝑡. Then,
𝜆2 − 2𝜆 + 1 = 0

So, 𝜆1, 𝜆2 = 1. Hence, 𝑦1 = 𝑒𝑡 and 𝑦2 = 𝑡𝑒𝑡.

𝑦𝐻 = 𝐶1𝑒𝑡 +𝐶2𝑡𝑒𝑡 (2)

For 𝑦𝑝, 𝑦𝑝 = 𝑣1𝑦1 + 𝑣2𝑦2.

𝑣′1 = − 𝑒𝑡
1+𝑡2 .𝑡𝑒𝑡

𝑊[𝑒𝑡, 𝑡𝑒𝑡] (3)

𝑣′2 =
𝑒𝑡

1+𝑡2 .𝑒𝑡
𝑊[𝑒𝑡, 𝑡𝑒𝑡] (4)

𝑊[𝑒𝑡, 𝑡𝑒𝑡] = [𝑒
𝑡 𝑡𝑒𝑡
𝑒𝑡 𝑒𝑡 + 𝑡𝑒𝑡]
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𝑊[𝑒𝑡, 𝑡𝑒𝑡] = 𝑒2𝑡 + 𝑡𝑒2𝑡 − 𝑡𝑒2𝑡 = 𝑒2𝑡

So,

𝑣′1 = − 𝑒𝑡
1+𝑡2 .𝑡𝑒𝑡
𝑒2𝑡

𝑣′1 = − 𝑒𝑡
1 + 𝑡2

𝑣1 = ∫− 𝑒𝑡
1 + 𝑡2𝑑𝑡

Let 𝑢 = 1 + 𝑡2, 𝑑𝑢 = 2𝑡𝑑𝑡.Then,
𝑣1 = −∫ 1

2𝑢𝑑𝑢

𝑣1 = −𝑙𝑛|1 + 𝑡2|
2

Since, 1 + 𝑡2 > 0, so,

𝑣1 = −𝑙𝑛(1 + 𝑡2)
2 (5)

From, equation (3),

𝑣′2 =
𝑒𝑡

1+𝑡2 .𝑒𝑡
𝑒2𝑡

𝑣′2 = 1
1 + 𝑡2

𝑣2 = 𝑡𝑎𝑛−1(𝑡) (6)

Hence, the solution of differential equation (1) is

𝑦 = −𝑙𝑛(1 + 𝑡2)
2 𝑒𝑡 + 𝑡𝑎𝑛−1(𝑡)𝑡𝑒𝑡 +𝐶1𝑒𝑡 +𝐶2𝑡𝑒𝑡 (7)
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Figure 8: Plot of 𝑦(𝑡) = [𝑙𝑛(1 + 𝑡2)𝑒𝑡]/2 + 𝑡𝑎𝑛−1(𝑡)𝑡𝑒𝑡 +𝐶1𝑒𝑡 +𝐶2𝑡𝑒𝑡
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